![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Осреднение напряженийЗа осредненное напряжение
где T - время осреднения. Аналогично для касательного напряжения Если произведено осреднение скорости, то действительную (истинную) скорость в данной точке можно представить как сумму средней скорости и величины отклонения скорости от средней в данный момент, т.е.
Величины Пульсационные добавки напряжений будут определяться аналогичным образом
Заметим, что величина осредненной пульсационной добавки всегда равна нулю
что наглядно видно из графика пульсаций (см. рис.6.12). Если измерять в некоторой точке скорости и давления жидкости, то при измерении обычными грубыми средствами - пьезометром, трубкой полного напора и т.п. практически не будут отмечаться пульсации. Скорости и давления нам будут представляться постоянными во времени . По существу, будут измеряться осредненные во времени величины Рейнольдс предложил рассматривать не действительное движение жидкости, а осредненно-идеализированное. Этот осредненный поток в лучшей мере отвечает нашим опытным данным, относящимся, по существу, лишь к средним во времени величинам. Но тогда, как показал Рейнольдс, и дифференциальные уравнения должны содержать в качестве неизвестных не истинные переменные, а осредненные. В частности, Рейнольдс произвел осреднение уравнений Навье-Стокса, т.е. ввел вместо актуальных величин скоростей и давлений их осредненные значения. При таком осреднении в уравнениях движения жидкости появляется 9 новых неизвестных членов типа То есть появляются какие-то новые силы (так как каждый член уравнения выражает силу). Идеализация движения жидкости привела к идеализации и силовых соотношений. При этом замкнутая система уравнений Навье-Стокса оказалась разомкнутой. Появилась необходимость связать каким-то образом пульсации Так появились гипотезы турбулентности Маккавеева, Прандтля, Кармана, Тейлора, Фридмана и др. Но ни одна из этих гипотез ( за исключением гипотезы Фридмана) не в состоянии замкнуть систему уравнений. Они лишь сводят задачу к отысканию опытным путем каких-либо новых функций l,c и т.п., взамен пульсаций Подобные теории турбулентности названы полуэмпирическими, так как часть величин в них находится из опыта. Гипотеза же Фридмана, хотя и замыкает систему уравнений, но сводит ее к системе из 20-ти дифференциальных уравнений в частных производных весьма сложного вида. Поэтому практически эта гипотеза использована быть не может. Мы рассмотрим лишь наиболее простые случаи осредненных потоков и лишь наиболее распространенную полуэмпирическую теорию турбулентности Прандтля (см. § 6.15).
|