Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Розв’язок. Завдання для самостійної роботи




Завдання для самостійної роботи

1. Розв’язати СЛАР методом Ґаусса:

2. Знайти наближене розв’язання системи

методом простої ітерації з точністю

3. Розв’язати СЛАР, використовуючи розглянуті прямі та ітераційні методи:

Коефіцієнти і вільні члени СЛАР заданої системи рівнянь наведено у табл. Б.5 додатка Б.

 

Порядок виконання самостійної роботи

Розв’язання СЛАР матричним методом і за допомогою функції lsolve.

Для виконання завдання необхідно:

1. Задати матрицю коефіцієнтів системи, матрицю-стовпець вільних членів.

2. Упевнитися, що СЛАР має розв’язання, для чого необхідно обчислити детермінант або ранґ матриці (як зроблено в прикладах).

3. Розв’язати СЛАР за формулою (2.3).

4. Перевірити правильність розв’язання множенням матриці коефіцієнтів на матрицю-стовпець розв’язання, зробити висновки.

5. Знайти розв’язання системи за допомогою функції lsolve.

Розв’язання СЛАР методом Ґаусса

1. Задати матрицю коефіцієнтів системи, матрицю-стовпець вільних членів.

2. Отримати розширену матрицю системи, наприклад, за допомогою функції augment.

3. Привести розширену матрицю системи до матриці, що має вигляд сходинки (функція rref).

4. Отримати матрицю-стовпець розв’язання системи.

5. Перевірити правильність розв’язання множенням матриці коефіцієнтів на матрицю-стовпець розв’язання, зробити висновки.

Розв’язання СЛАР ітераційним методом та за допомогою обчислювального блока

1. Задати матрицю коефіцієнтів системи, матрицю-стовпець вільних членів і точність обчислень (можна скористатись вбудованою змінною пакета TOL, наприклад ; значення за замовчуванням ).

2. Перетворити початкову систему до вигляду (2.9).

3. Перевірити збіжність ітераційного процесу (обчислити будь-яку норму матриці: функції norm1(A), norm2(A), norme(A)).

4. Задати кількість ітерацій (можна скористатися формулою (2.13)).

5. Задати у вигляді матриці-стовпця початкове (нульове) наближення до шуканого розв’язання.

6. Увести формулу ітераційного процесу, за якою й розв’язати СЛАР.

7. Обчислити похибку отриманого наближення, зробити висновки.

8. Задати початкові наближення (можна окремими змінними, як це зроблено в прикладі 5; можна матрицею-стовпцем; можна індексованими змінними через клавішу "[").

9. Записати обчислювальний блок, використовуючи функції Find або Minerr (під час запису рівнянь системи необхідно використовувати символьне дорівнює “Ctrl – ‘‘=”).

Примітка. Для виконання завдання необхідно мати уявлення про процедуру розв’язання матричних рівнянь з використанням формул Крамера, оберненої матриці, метода Ґаусса, ітераційних методів і застосування засобів пакета MathCAD.

Контрольні запитання

1. Наведіть загальний вигляд СЛАР.

2. Запишіть СЛАР у матричному вигляді й наведіть її розв’язання, використовуючи формули Крамера.

3. Назвіть основні типи й властивості матриці.

4. Як обчислюють визначник матриці?

5. Які дії виконують над матрицями?

6. Які матриці називають однорідними, визначеними?

7. Як здійснюють обернення й транспонування матриць?

8. На які групи поділяють на практиці методи, що використовують для розв’язання СЛАР? Дайте порівняльну оцінку методам розв’язання СЛАР.

9. У чому полягає суть методу Ґаусса з вибором головного елемента? Поясніть поняття “прямий” та “зворотний” хід методу Ґаусса. Навіщо у методі Ґаусса потрібний етап “вибір головного елемента”?

10. Як перевірити збіжність методу?

11. У чому полягає метод простих ітерацій?

12. Що є умовою закінчення ітераційного процесу?

13. Як засобами пакета MathCAD розв’язують СЛАР?

Література: [1, C. 24-59; 7, C. 65-118; 11, C. 55-63].



Поделиться:

Дата добавления: 2015-09-13; просмотров: 139; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты