КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Абсолютные и относительные погрешности
Принципиальная трудность работы с вещественными числами заключается в том, что любая переменная в памяти ЭВМ может принимать лишь конечное число значений, поэтому вещественные числа не могут быть представлены в компьютере точно. Числа записываются в форме с плавающей запятой. При этом отдельно хранится мантисса М. Число М по абсолютной величине не превосходит 1 и порядок P, значит, пара (Р,М) задает вещественное число
В ЭВМ, как правило, а = 2 или a = 16. Для записи мантиссы используется фиксированное число k, т.е. ,
где ММ – целое число и . Диапазон изменения порядка тоже ограничен:
.
Значит, представление чисел в компьютере обладает следующими свойствами:
1. Абсолютная погрешность равна абсолютной величине разности точного числа и приближенного . 2. Относительная погрешность равна отношению абсолютной погрешности к точным значениям . 3. Невозможно представить очень большие по модулю и очень малые («нулевые») числа. Произвольное вещественное число, попадающее в допустимый интервал, может быть написано с некоторой погрешностью. Относительная погрешность в этом случае примерно постоянна и равна . Рассмотрим ошибки вычислений, связанных с вычитанием близких чисел – действие, приводящее к потере точности
,
или
.
Следующий источник ошибок – суммирование слагаемых с различным порядком сложения: 55,55 + 0,001 + 0,001 + … + 0,001 .
Мы не можем хранить пятую цифру, т.е. результат будет 55,55, следовательно, останется без изменений. А если сначала сложить 100 х 0,001 = 0,1 получим 55,61. Поэтому суммирование чисел необходимо производить в порядке возрастания слагаемых.
|