Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Приведение системы линейных уравнений к виду, удобному для итераций




 

Процессы последовательных приближений и метод Зейделя для линейных систем х = b + aC сходятся к единому решению, независимо от выбора начального вектора, если

или

.

 

Таким образом, для сходимости вышеуказанных итерационных процессов достаточно, чтобы значения элементов aij при i ¹ j были небольшими по абсолютной величине. Это равносильно тому, что если для линейной системы АХ = В модули диагональных коэффициентов каждого уравнения системы больше суммы модулей всех остальных коэффициентов (не считая свободных членов), то итерационные процессы для этой системы сходятся, т.е. мы имеем систему

.

Причем, если то процессы последовательных приближений и Зейделя для данной системы сходятся. Применяя элементарные преобразования, линейную систему АХ = В можно заменить такой эквивалентной системой Х = р + aХ, для которой условия сходимости будут выполнены.

 

ЛЕКЦИЯ 5. МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

 

При решении практических задач, часто приходится сталкиваться с решением уравнений. Всякое уравнение с одним неизвестным можно представить в виде , где и – заданные функции, определенные на некотором числовом множестве Х, называемом областью допустимых значений уравнения или

если обозначить левую часть за , то получим уравнение .

Совокупность нескольких уравнений с несколькими неизвестными называют системой уравнений.

 


Поделиться:

Дата добавления: 2015-09-13; просмотров: 142; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты