КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Через безынерционные цепи
Безынерционная цепь (безынерционный функциональный узел –БФУ) полностью описывается функциональной зависимостью y = f(x), связывающей мгновенные значения воздействия x(t) и реакции y(t) в совпадающие моменты времени. В результате имеем дело с функциональным преобразованием случайного процесса Y(t) = f [X(t)]. Для вычисления одномерной плотности вероятности реакции w(y) по известной плотности вероятности воздействия w(x) рассмотрим рис. 5.2, на котором изображены функциональная характеристика БФУ y = f (x), заданная плотность вероятности воздействия w(x) и искомая плотность вероятности реакции БФУ w(y). Учитывая, что при попадании случайной величины X в интервал (x, x+dx) случайная величина Y с вероятностью 1 попадает в соответствующий ему интервал (y, y+dy), можно написать следующее соотношение , из которого вытекает , (5.1) где f -1(y) – обратная функция (x = x(y) = f -1(y)). Дифференциалы dx, dy и производная обратной функции в полученном выражении взяты по модулю в силу свойства положительности плотности вероятности.
Примеры:
1. Линейное безынерционное преобразованиеy = f (x) = ax + b. Обратная функция , . Таким образом, при линейном преобразовании случайной величины ее кривая плотности распределения смещается на величину b, а масштаб по координатным осям изменяется в |a| раз. 2. Кусочно-линейное преобразование y = f (x) (рис. 5.3). Задачу решим графически, определяя вид кривой wY(y) на отдельных интервалах оси у.
а) при у < 0 и у > y2 wY (y) = 0, т. к. значения реакции у не могут выйти за пределы уровней отсечки (у = 0) и насыщения (у = y2,); б) при 0 < у < y1 wY (y) = 0, т. к. в этот интервал (протяженностью y1) значения реакции попадают при единственном значении воздействия x = x1, вероятность которого wX(x1)dx ® 0; в) при y1 ≤ у < y2 , где b = y1, (см. пример 1); г) при у = 0 , т. к. у = 0 для всех х < x1; д) при у = у2 , т. к. у = у2 для всех х > x2. 3. Преобразование при неоднозначной обратной функции . На практике встречаются ситуации, когда обратная функциональная характеристика является многозначной (рис. 5. 4). Рассуждая аналогично тому, как это делали при выводе выражения (5.1), легко убедиться в том, что в этом случае для интервала . Если при анализе прохождения СП через БФУ достаточно знать только основные характеристики распределения реакции, то их можно найти, не определяя wY(y). В частности: математическое ожидание , дисперсия функция корреляции .
|