Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Клонирование организмов и клеток.




 

Клеточная инженерия. Понятие о клонировании. Природные и искусственные клоны. История клонирования организмов. Биологические и этичные проблемы клонирования. Терапевтическое клонирование и его перспективы в медицине.

 

Клеточная инженерия. Понятие о клонировании. Термин «клон» происходит от греческого слова «klon», что означает веточка, побег, отпрыск и имеет отношение, прежде всего к вегетативному размножению. Строго говоря, даже вегетативное размножение микроорганизмов делением можно назвать клонированием.

Клонированию можно давать много определений. Вот некоторые самые распространенные из них: клонирование - популяция клеток или организмов произошедших от общего предка путём бесполого размножения, причём потомок при этом генетически идентичен своему предку. Воспроизводство организмов полностью повторяющих особь, возможно только в том случае, если генетическая информация матери будет без каких-либо изменений передана дочерям. Но при естественном половом размножении этому препятствует мейоз. В ходе мейоза незрелая яйцеклетка, имеющая двойной, или диплоидный набор хромосом - носителей наследственной информации - делиться дважды и в результате образуются четыре гаплоидных, с одинарным набором хромосом, клетки. Три из них дегенерируют, а четвёртая с большим запасом питательных веществ, становится яйцеклеткой. У многих животных она в силу гаплоидности не может развиваться в новый организм. Для этого необходимо оплодотворение. Организм, развившийся из оплодотворенной яйцеклетки, приобретает признаки, которые определяются взаимодействием материнской и отцовской наследственности. Следовательно, при половом размножении мать не может быть повторена в потомстве.

Как же вопреки этой строгой закономерности заставить клетку развиваться только с материнским диплоидным набором хромосом? Теоретически решение этой трудной биологической проблемы найдено.

Природные и искусственные клоны. В природе всё-таки имеются случаи клонирования человека, это однояйцовые или монозиготные близнецы - настоящие клоны с одним и тем же геномом, возникающие при разделении одной зиготы на ранней стадии развития. Это всегда только оба мальчика или обе девочки и всегда удивительно похожие друг на друга. Известно также, что эмбрион млекопитающего, в том числе и человека на самых ранних стадиях развития, у человека, по крайней мере, до стадии 8 бластомеров, может быть без видимых отрицательных последствий разделён на отдельные бластомеры. Из них при определённых условиях могут развиться идентичные по своему генотипу особи, по аналогии с однояйцовыми близнецами, то есть из одного 8-клеточного эмбриона могут родиться 8 мальчиков или девочек абсолютно идентичных.

В природе широко распространено клонирование растений. Прежде всего, это относится к вегетативному размножению, что давно используется человеком. Дело в том, что у растений в отличие от животных по мере их роста, в ходе клеточной специализации - дифференцировки - клетки не теряют так называемые тотипотентные свойства, то есть, не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившая в процессе дифференцировки своё ядро, может дать начало новому организму. Эта особенность растительных клеток лежит в основе многих методов генетики и селекции.

При вегетативном размножении и при клонировании гены не распределяются по потокам, как в случае полового размножения, а сохраняются в полном составе в течение многих поколений. Всё организмы, входящие в состав определённого клона имеют одинаковый набор генов и фенотипически не различаются между собой.

Клетки животных, дифференцируясь, лишаются тотипотентности, и в этом, одно из существенных отличий от клеток растений. Как будет показано ниже именно здесь главное препятствие для клонирования взрослых позвоночных животных.

История клонирования организмов. Клонирование растений черенками, почками или клубнями в сельском хозяйстве, в частности в садоводстве, известно уже более 4-х тыс. лет. Начиная с 70-х годов нашего столетия, для клонирования растений стали широко использовать небольшие группы, и даже отдельные соматические клетки. Гораздо большую сложность представляет клонирование животных. Первые шаги к клонированию животных были предприняты около ста лет назад зоологом Московского Университета Александром Тихомировым, открывшим на примере тутового шелкопряда партеногенез: развитие без оплодотворения в результате химических и физических воздействий. Однако партеногенетические эмбрионы шелкопряда были нежизнеспособны.

В 30-е годы минувшего века академиком Б. Астауровым проводилась серия исследований, в результате которых было подобрано термическое воздействие, способное одновременно активировать неоплодотворенное яйцо к развитию и блокировать процесс превращения ядра яйцеклетки с двойным хромосомным набором в ядро с одинарным набором. Таким образом, были получены первые генетические копии. Увы, и такое потомство отличалось низкой жизнеспособностью. В дальнейшем этот метод был усовершенствован академиком В. Струнниковым, работы которого по клонированию шелкопряда получили в итоге мировую известность.

История клонирования позвоночных начинается в 40-е годы 20-го века, когда российский эмбриолог профессор, Г. Лопашов на лягушках разработал метод пересадки ядер, на котором основаны все современные эксперименты по клонированию. Метод состоит в выделении ядра соматической клетки и имплантации его в обезъядренную (энуклеированную) яйцеклетку. Статья, написанная по материалам этих экспериментов, была отправлена в «Журнал общей биологии» в августе 1948 года. Однако света она так и не увидела вследствие состоявшейся месяцем позже сессии ВАСХНИЛ, приведшей к беспредельному господству «лысенковщины» в биологии. Через несколько лет, в начале 50-х уже американские эмбриологи Кинг и Бриггс провели опыты, подобные экспериментам Лопашова, и «переоткрыли» метод, чем и прославились.

Впервые возможность клонирования эмбрионов позвоночных была продемонстрирована американскими биологами на лягушках в начале 50-х годов. Затем в 1962 году зоолог Оксфордского университета Дж. Гердон существенно продвинул эти результаты, когда в опытах с южноафриканскими жабами стал использовать в качестве донора ядер не зародышевые клетки, а уже вполне специализировавшиеся клетки эпителия кишечника подросшего головастика. Выживало не более двух процентов клонированного потомства, да и у выживших наблюдались различные дефекты. Однако это был огромный шаг вперед по пути клонирования.

Перейти от амфибий к млекопитающим оказалось весьма трудно, главным образом по той причине, что размеры яйцеклетки у млекопитающих примерно в тысячу раз меньше, чем у земноводных. Но к концу 70-х эти трудности удалось преодолеть, так что к началу 80-х были освоены эксперименты по клонированию эмбрионов мышей, а к концу десятилетия ученые стали получать важные результаты на эмбрионах кроликов и крупных домашних животных. Вплоть до середины 90-х годов вопрос об использовании взрослых млекопитающих в качестве доноров ядер клеток практически не ставился, поскольку ученые-биологи занимались главным образом клонированием эмбрионов домашних животных, причем эксперименты в этой области и по сию пору проходят весьма непросто и с высоким уровнем неудач. Поэтому поистине сенсацией стала история с клонированием в 1996 году знаменитой ныне овечки Долли в шотландской фирме PPL Therapeutics (коммерческого отделения Розлин Института в Эдинбурге). Коллектив ученых, возглавляемый Иэном Уилмутом, продемонстрировал, что им удалось, используя соматические клетки взрослого животного, получить клональное животное - овцу по кличке Долли. Однако этому предшествовала большая работа.

Ещё в 1986 году Уиландсин показал, что эмбрионы овец на 16-клеточной стадии развития сохраняют тотипотентность. Реконструированные яйцеклетки, содержащие ядра бластомеров 16-клеточных зародышей, развивались нормально до стадии бластулы в перевязанном яйцеводе овцы (в агаровом цилиндре), а после освобождения от агара, пересаживали в матку овцы- второго реципиента - ещё на 60 дней. В другом случае донорами служили ядра 8-клеточных зародышей и были получены три живых ягнёнка, фенотип которых соответствовал породе овцы- донора.

В 1989 году Смит и Уилмут трансплантировали ядра клеток 16-клеточного эмбриона и ранней бластулы в лишённые ядра неоплодотворенной яйцеклетки овец. В первом случае было получено два живых ягнёнка, фенотип которых соответствовал породе овец - доноров ядер. Во втором случае один полностью сформировавшийся ягнёнок погиб во время родов. Его фенотип также соответствовал породе-донору. Авторы считали, что в ходе дифференцировки эмбриональных клеток происходит инактивация некоторых важных для развития генов и в результате ядра бластулы уже не могут репрограммироваться в цитоплазме яйцеклетки и обеспечить нормальное развитие реконструированного зародыша. Поэтому, по мнению авторов, в качестве доноров ядер лучше использовать 16-клеточные эмбрионы или культивированные in vitro линии эмбриональных клеток, ядра которых обладают тотипотентностью.

Позднее, в 1993-95 гг., группа исследователей под руководством Уилмута получила клон овец - пять идентичных животных, донорами ядер которых была культура эмбриональных клеток. Клеточную культуру получали следующим образом: выделяли микрохирургическим путём эмбриональный диск из 9-дневного овечьего эмбриона (бластулы) и культивировали клетки in vitro в течение многих пассажей (по крайней мере, до 25). Сначала клеточная культура напоминала культуру стволовых дифференцированных эмбриональных клеток, но вскоре, после 2-3 пассажей, клетки становились уплотнёнными и морфологически сходными с эпителиальными. Эта линия клеток из 9-дневного зародыша овцы была обозначена как TNT4.

Чтобы донорское ядро и реципиентная цитоплазма находилась на сходных стадиях клеточного цикла, останавливали деление культивируемых клеток TNT4 на определённой стадии (G0) и ядра этих клеток пересаживали в энуклеированные яйцеклетки (соответственно на стадии метафазы II). Реконструированные эмбрионы заключали в агар и трансплантировали в перевязанные яйцеводы овец. Через шесть дней эмбрионы вымывали из яйцеводов промежуточных реципиентов и исследовали под микроскопом. Отбирали те, которые достигали стадии морулы и бластулы и пересаживали их в матку овцы - окончательного реципиента, где развитие продолжалось до рождения. Родилось пять ягнят (самок), из них две погибли вскоре после рождения, третья в возрасте десяти дней, а две оставшихся нормально развивались и достигли 8-9-месячного возраста. Фенотипически все ягнята были сходны с породой овец, от которой получали исходную линию клеток TNT4. Это подтвердил и генетический анализ.

Эта работа, особенно в части культуры эмбриональных клеток, значительное достижение в клонировании млекопитающих. Хотя она и не вызвала особого интереса, как статья того же Уилмута с соавторами, опубликованная в 1997 году, где сообщалось, что в результате использования донорского ядра клетки молочной железы овцы было получено клональное животное - овца по кличке Долли. Последняя работа методически во многом повторяла предыдущие исследования 1996 года, но в ней учёные использовали не только эмбриональные, но ещё и фибробластоподобные клетки (фибробласты - клетки соединительной ткани) плода и клетки молочной железы взрослой овцы. Клетки молочной железы получали от 6-летней овцы породы Финн Дорсет, находящейся на последнем триместре беременности. Все три типа клеточных культур имели одинаковое число хромосом - 54, как обычно у овец. Эмбриональные клетки использовали в качестве доноров ядер на 7-9 пассажах культивирования, фибробластоподобные клетки плода на 4-6 пассажах и клетки молочной железы на 3-6 пассажах. Деление клеток всех трёх типов останавливали на стадии G0 и ядра клеток пересаживали в энуклеированные ооциты (яйцеклетки) на стадии метафазы II. Большинство реконструированных эмбрионов сначала культивировали в перевязанном яйцеводе овцы, но некоторые эмбрионы культивировали in vitro в химически определённой среде. Коэффициент выхода морул и бластул при культивировании in vitro в одной серии опытов был даже вдвое выше, чем при культивировании в яйцеводе (поэтому видимо, нет строгой необходимости в промежуточном реципиенте и можно обойтись культивированием in vitro).

Выход морул и бластул в серии опытов с культурой клеток молочной железы, был примерно втрое меньше, чем в двух других сериях, когда в качестве доноров ядер использовали фибробластов плода или эмбриональных клеток. Число живых ягнят в сравнении с числом пересаженных в матку окончательного реципиента морул или бластул было также в два раза ниже. В серии опытов с клетками молочной железы и 277 реконструированных яйцеклеток был получен только один живой ягнёнок, что говорит об очень низкой результативности такого рода экспериментов (0,36%). Анализ генетических маркеров всех семи родившихся в трёх сериях экспериментов живых ягнят показал, что клетки молочной железы были донорами ядер для одного, фибробласты плода - для двух и эмбриональные клетки для четырёх ягнят. Овца Долли развилась из реконструированной яйцеклетки, донором ядра которой была культивируемая клетка молочной железы овцы породы Финн Дорсет. Долли фенотипически не отличается от овец этой породы, но сильно отличается от овцы-реципиента породы шотландская черномордая. Анализ генетических маркеров подтвердил этот результат.

Относительный успех (Долли умерла от преждевременного старения) авторов этой работы, прежде всего, связан с использованием длительных клеточных культур, так как после многих пассажей в культуре клеток могли быть отобраны малодифференцированные стволовые клетки, которые вероятно и были использованы как доноры ядер. Большое значение имел также тот факт, что авторы, учитывая результат своих прошлых работ, синхронизировали стадии клеточного цикла яйцеклеток реципиента и яйцеклеток донора.

Своей работой Уилмут с коллегами продемонстрировали, что ядра клеток молочной железы взрослой овцы могут быть при определённых условиях репрограммированы цитоплазмой ооцита и дать развитие новому организму. Полученные данные заставили по-новому посмотреть на процесс клеточной дифференцировки. Этот процесс, как оказалось, не носит необратимый характер. Совершенно ясно, что цитоплазматические факторы способны инициировать развитие нового организма на основе генетического материала ядра взрослой полностью дифференцированной клетки. Таким образом, биологические часы могут быть повёрнуты вспять, и развитие организма может начаться из генетического материала взрослой дифференцированной клетки, что полностью противоречит ранее общепринятой биологической догме.

Если результаты последней работы Уилмута и соавторов окончательно подтвердятся и будет повышен коэффициент выхода живых животных при использовании в качестве доноров ядер клеток взрослых животных, то это может иметь революционное значение в биотехнологии животных и животноводстве. Клонирование позволит сохранить не только генотип ценных и выдающихся в производственном отношении животных, но и безгранично размножать их.

Клонирование высокопродуктивных домашних животных, в частности, молочных коров, может произвести буквально революцию в сельском хозяйстве, так как только этим методом можно создать не отдельные экземпляры, а целые стада элитных коров рекордисток. Это же относится к размножению выдающихся спортивных лошадей, ценных пушных зверей, сохранению редких и исчезающих животных в природных популяциях и т.д.

Беспрецедентный по своему масштабу эксперимент по массовому клонированию крупного рогатого скота недавно начался в Китае. Как сообщает местная печать, в Синьцзян-Уйгурском автономном районе на северо-западе страны ожидается появление от 20 до 50 клонированных телят. Проект ведется компанией «Цзиньню» и является крупнейшим в своем роде в мире. В нем также участвуют Австралия, Канада, США и Великобритания и ряд других стран. Китайские ученые полагают, что клонирование станет важным шагом в развитии животноводства и улучшении племенной работы.

Внедрение в практику методов межвидового переноса ядер может открыть невиданные перспективы для спасения находящихся на грани исчезновения видов животных. Как показали работы Т. Доминко и соавт. в 1999 г., энуклеированные ооциты крупного рогатого скота после электрослияния с ядрами кожных фибробластов быков (Bos taurus), овец (Ovis aries), свиней (Sus scrofa), обезьян (Масаса fascicularis) и крыс (Rattus rattus) могут поддерживать развитие эмбрионов до ранних стадий (в некоторых случаях до стадий бластоцисты). В других исследованиях было зафиксировано, что энуклеированные яйцеклетки крупного рогатого скота обеспечивают реализацию генетического материала донорских ядер из соматических клеток человека даже до более продвинутых эмбриональных стадий. Это является свидетельством того, что даже перенос ядер в ооциты далеких в эволюционном отношении видов обеспечивает их частичное репрограммирование. А может ли быть так, что трансплантация ядер в энуклеированные яйцеклетки близких видов приведет к получению полноценного здорового потомства? В конце 2000 - начале 2001 г. весь научный мир следил за попыткой исследователей из американской фирмы «ACT» клонировать вымирающий вид буйволов Bos gaurus (гяур), который распространен на территории Индии и Юго-Западной Азии. Соматические клетки-доноры ядер (кожные фибробласты) были получены в результате биопсии post mortem от быка в возрасте 5 лет и после двух пассажей в культуре длительное время (8 лет) хранились в криоконсервированном состоянии в жидком азоте. Всего было получено четыре беременности. Чтобы подтвердить генетическое происхождение плодов, два из них были выборочно изъяты. Цитогенетический анализ подтвердил наличие в клетках характерного для гяуров нормального кариотипа, однако выяснилось, что вся митохондриальная ДНК происходит от коров-доноров яйцеклеток (Bos taurus).

Как известно, митохондрии являются «энергетическими станциями» клеток, именно в них происходит синтез АТФ, соединения с гиперергическими связями, при разрушении которых выделяется большое количество энергии, используемой в процессах жизнеобеспечения клетки. Активность митохондрий регулируется как собственным генетическим аппаратом - генами, закодированными в митохондриальной ДНК, так и генами, локализованными в ядре клетки. Общее количество митохондриальной ДНК (мДНК) в соматической клетке насчитывает 20 000-30 000 молекул в отличие от яйцеклетки млекопитающего, в которой содержится около 100 000 молекул мДНК. Такое явление, когда в цитоплазме клетки находится более одного типа мДНК, называется митохондриальной гетероплазмией. Митохондриальная ДНК наследуется по материнской линии вместе с цитоплазмой ооцита, поэтому получаемые в результате клонирования животные не являются стопроцентными клонами, потому что несут митохондрии донора ядер и индивидуумов-доноров реципиентных энуклеированных яйцеклеток, и обладают, таким образом, митохондриальной гетероплазмией. Взаимодействие между ядерной ДНК и чужеродной мДНК требует дальнейшего изучения. Весьма вероятно, что митохондриальная гетероплазмия может приводить к дисбалансу в энергетическом обмене клетки и служить причиной серьезных нарушений. К сожалению, в опыте американских ученых одна из беременностей прервалась на 200-дневном сроке, а в результате другой родился теленок, который умер спустя 48 ч. Представителями фирмы было заявлено, что это произошло «по причине инфекционного клостридиозного энтерита, не имеющего отношения к клонированию».

Предпринимаются и другие попытки клонирования с целью спасения исчезающих видов. Так, 11 коров с фермы в штате Айова уже вынашивают клоны младенцев бантенгов - исчезающую разновидность диких азиатских быков. Китайские ученые из Института зоологических исследований, намеренных клонировать исчезающих вид гигантских панд. Их индийские коллеги собираются аналогичным способом восстановить популяцию гепардов, окончательно истребленных охотниками в первой половине прошлого века, еще во времена правления Британской империи. Донорами яйцеклеток для клонированных животных станут гепарды из соседнего Ирана, принадлежащие к тому же виду, что и звери, прежде обитавшие на полуострове Индостан, а суррогатными матерями, в которых будут развиваться пересаженные яйцеклетки - самки индийского леопарда.

Клонирование растений значительно проще, чем клонирование животных. Мы рассмотрим только сравнительно новую технологию выращивания растений из изолированных групп клеток и отдельных соматических клеток.

Для клонирования достаточно растительную клетку изолировать из целого растения и поместить на питательную среду, содержащую солевые компоненты, витамины, гормоны и источник углеводов, она начинает делиться и образует культуру каллуса. В дальнейшем каллусы можно размножить и получить неограниченное количество биомассы. Основная трудность, с которой сразу же приходится сталкиваться исследователю - это то, что клетки в искусственных условиях начинают бурно делиться и расти, но при этом часто не в состоянии продуцировать вторичные метаболиты, т.е. биологически активные вещества растений.

Клонирование растений чаще применяется в комплексе с другими биотехнологическими методами, такими как слияние (гибридизация) клеток и трансгенез (межвидовой перенос генов). Целые растения из реконструированных клеток получают затем методом клонирования. Слияние клеток осуществляется несколькими способами с использованием так называемых фузогенных (т.е. сливающих) агентов различного происхождения: физического (переменное электрическое или магнитное поле), химического (катионы, полиэтиленгликоль и др.), биологического (вирусы). Растительные клетки перед слиянием превращают в протопласты (т.е. клетки, лишенные внешней жесткой клеточной стенки). Последующий отбор (скрининг) полученных гибридных клеток позволяет отобрать те из них, которые объединили геномы или фрагменты ДНК родительских клеток. Клеточная инженерия позволяет получать гибридные штаммы, клетки или даже целые растения (растения-регенераты), скрещивая между собой филогенетически (т.е. эволюционно) отдаленные организмы. В случае неполного слияния клеток (т.е. клетка-реципиент получает отдельные участки ядерного генетического материала или части клетки- донора (органеллы)) получаются асимметричные гибриды. Это расширяет возможности получения новых сортов сельскохозяйственных растений, для создания которых ранее использовались методы классической селекции.

Биологические и этические проблемы клонирования. За последнее время созданы ряд межвидовых и межродовых гибридов табака, картофеля, томата, капусты, турнепса, сои и др. Использование достижений клеточной инженерии, например, позволило разработать технологии получения безвирусных растений (например, картофеля) путем регенерации целого растения из одной соматической клетки.

Ученые работают над изменением генотипов злаков. Они вводят в их генотипы специальный ген бактерий, который будет способствовать усвоению азота из атмосферного воздуха. Решение этой проблемы позволило бы сократить затраты средств на производство азотных удобрений.

Перенос генов используется и при выведении новых сортов декоративных растений. Так, в генотип петунии был перенесен ген, нарушающий образование пигмента в лепестках. Таким путем была создана петуния с белыми цветками. Благодаря методам клеточной инженерии сроки, необходимые для выведения новых сортов растении, сокращаются с 10-12 лет при использовании обычных методов селекции до 3-4 лет.

Трансгенные растения постепенно завоевывают мир. Особенно интенсивно процесс идет в США, Западной Европе, Японии, Китае. Только в Китае по некоторым данным зарегистрировано около 120 генетически модифицированных сортов сельскохозяйственных культур. В США генетически модифицированная соя вытеснила традиционную. Благодаря достижениям в области трансгенеза и клонирования мы сможем уже в ближайшее десятилетие в полной мере воспользоваться растением как наиболее дешевой и экологически безопасной фабрикой для производства большинства необходимых человеку материалов, пищи, лекарственных препаратов, химических соединений, сырья и т. д.

Если говорить о перспективах медицинского применения генетически модифицированных растений, то наиболее популярен сейчас вопрос о синтезе витамина А в «Золотом рисе» — продукте совместных научных разработок групп Инго Потрикуса из Федерального технологического института (Швейцария) и Питера Бейера из Университета Фрайбурга (Германия). Получены результаты по экспрессии человеческого соматотропина (гормона роста) в хлоропластах табака. Это исследование заложило новую тенденцию в биотехнологии растений, а именно: синтез фармацевтических и диагностических препаратов и оральных вакцин растениями. Экспрессия соматотропина табаком — это работа Джеффри Стауба и его коллег в Monsanto Co., результаты которой опубликованы в журнале Nature Biotechnology (т. 18, с. 333, 2000). Синтез растениями антител и оральных вакцин уже был описан ранее. Недостатком предыдущих работ был относительно низкий уровень экспрессии искомых продуктов. И вот впервые важный с фармацевтической точки зрения белок в значительных количествах синтезирован путем использования новой системы экспрессии в хлоропластах.

Биотехнология растений играет важную роль и в решении продовольственной проблемы. Она дает новый мощный инструмент, дополняющий уже существующие способы повышения производительности сельского хозяйства и, как следствие, стимулирования экономического роста в бедных странах. Однако, в то время как медицинская продукция уже получила всеобщее признание, внедрение генетически модифицированных продуктов питания в некоторых развитых странах встретило сильнейшую оппозицию, связанную, главным образом, с недостатком генетических знаний и, как следствие, необоснованными страхами. Тем не менее, определенные опасения в отношении трансгенных растений имеют под собой почву.

По мнению специалистов, трансгенные организмы, преимущественно устойчивые к вредителям (в основном за счет токсинов, происходящих из Bacillus thuringiensis) способны вызвать изменения в популяции насекомых, однако куда большее влияние оказывает применение инсектицидов. Устойчивость к солям, воде, засухе и другие характеристики будут оказывать влияние, предсказать которое трудно, поэтому приступать к этим разработкам следует с особой осторожностью. Кроме того, следует гарантировать, что будут предприняты все необходимые меры предосторожности во всех случаях, когда продовольственные или кормовые культуры модифицируются с целью получения фармакологически активных соединений, которые могут быть перенесены к другим растениям, или проникать в почву и затем в воду. В целом продукты селекции растений значительно менее агрессивны, чем исходные или дикие растения. Это объясняется тем, что в них человек стремится закрепить выгодные для себя качества, а это зачастую серьезно ограничивает их способность выживать за пределами фермерского поля, где культивирование и контроль за сорняками значительно облегчает им жизнь.

Так, например, многие зерновые культуры отбирались по тому признаку, что их колосья не рассыпаются в процессе созревания. Это существенно облегчает уборку урожая, и в то же время препятствует естественному распространению семян. Вероятно, это окажется справедливым и в отношении генетически модифицированных растений, так как по своей основе они также представляют собой культивируемые растения. Недавние эксперименты в Великобритании показали, что сельскохозяйственные генетически модифицированные растения, тестированные на выживание в природных условиях, не имеют никаких преимуществ перед их дикими сородичами.

И все же существуют некоторые опасения, что чужеродные гены из ГМ- растений могут передаваться другим диким растениям, в результате чего возникнут сорняки, которые будет более сложно удержать под контролем. Эта опасность должна быть осознана. Считается недальновидным вводить ген толерантности к гербицидам в рис там, где красный рис произрастает как сорняк, и в сорго там, где сорняком является гумай (алепское сорго). Скрещивание с этими видами сильных сорняков может сделать неэффективным использование гербицидов для борьбы с ними. Пока что в результате применения трансгенных растений неблагоприятные эффекты не обнаружены.

Другое применение технологии клонирования - культивирование растение на питательных средах. Таким путем из небольшой части (клетки) растения можно получить до 1 млн. растений в год. Этот метод используют для быстрого размножения редких или вновь созданных ценных сортов сельскохозяйственных растений.

При культивировании клеток растений на питательных средах из одной многократно делящейся клетки можно получить клоны, в клетках которых накапливается в несколько раз больше ценных веществ, чем в выращиваемом обычным способом целом растении. Так получают, например, биомассу женьшеня для нужд парфюмерной и медицинской промышленности. В 1992-93 гг. в Биолого-почвенном институте ДВО РАН была получена трансгенная культура жень-шеня со встроенным геном ризогенных бактерий (rolC). Трансгенные корни имеют очень интересные свойства. В отдельных пробах содержание гинзенозидов в них составило до 6%, что существенно превышает содержание этих веществ в природных корнях женьшеня. Трансгенная культура кирказона маньчжурского (Aristolochia manshuriensis Кот.) является источником ценного препарата кардиотропного действия, предупреждающего развитие инфаркта миокарда и эффективного при постинфарктной реабилитации.

Одним из новых направлений является разработка способов микроклонального размножения редких и исчезающих растений. Получены микрорастения в культуре in vitro женьшеня, кирказона, незабудочника, метаплексиса, гиностеммы, василистника, родиолы, кодонопсиса и других редких растений флоры. Создание такого своеобразного «банка» растений поможет сохранить исчезающие в природе виды. По мере разработки методов восстановления природных экосистем эти банки будут использованы для реинтродукции типичных растений в природные местообитания.

Отдельным направлением клеточной инженерии, имеющим огромное практическое значение, является получение гибридом, т.е. клеток, возникающих при слиянии родительских клеток из одного организма, но с разными программами дифференциации и развития. Это могут быть клетки из разных типов ткани или опухолевые клетки. Наибольшее развитие гибридомная технология нашла в получении моноклональных антител (МкАТ). Методика была разработана Келлером и Мильштейном.

В этом случае гибридому получают между нормальной антителобразующей клеткой и опухолевой, плазмоцитомной клеткой. Плазмоцитома была взята потому, что она больше всего соответствовала АОК по типу дифференцировки. Весь ее синтетический аппарат был настроен на синтез иммуноглобулинов. Проблема заключалась в том, как отделить заданную гибридому от присутствующих в системе отдельных неслившихся клеток и от гибридов иного состава или иной специфичности, чем требуемые.

Для достижения этой цели авторы методики разработали специальную схему, использующую отбор клеток в селектирующей среде. Прежде всего, был получен особый мутант мышиной плазмоцитомы, рост которого можно было контролировать составом питательной среды. Для получения мутанта использовали особенности синтеза нуклеиновых кислот (ДНК и РНК), имеющихся во всех клетках и необходимых для их существования. Известно, что имеются два пути синтеза предшественников нуклеиновых кислот: основной и резервный. Основной - это путь новообразования нуклеотидов, звеньев, входящих в состав нуклеиновых кислот. Этот путь включает несколько этапов и блокируется противоопухолевым препаратом аминоптерином (А). Однако клетки не гибнут от этого препарата, поскольку обладают резервным путем - способностью синтезировать нуклеотиды и нуклеиновые кислоты, реутилизируя продукты распада ранее синтезированных нуклеиновых кислот: гипоксантина (Г) и тимидина (Т). Добавление Г и Т в питательную среду, содержащую А, снимает токсический эффект последнего.

Для селекции гибридом надо было получить мутант плазмоцитомы, не способный пользоваться резервным путем и, следовательно, погибающий в среде, содержащей Г, Т и А (ГАТ-среда). Такой мутант получили путем добавления в среду токсических аналогов Г и Т. Все клетки, способные усваивать Г и Т, включали их токсичные аналоги и погибали. Выживали лишь те редкие мутанты, которые были неспособны усваивать Г и Т, то есть были лишены резервного пути. Из потомства этих клеток дополнительно отбирали еще и такие мутанты, которые утратили способность к синтезу собственных иммуноглобулинов. Теперь все было готово для получения гибридом, то есть гибридов нормальных АОК и плазмоцитомных клеток. Мышей интенсивно иммунизировали определенным материалом - белком, бактериальной клеткой или клеткой животного происхождения. Когда в их крови появлялись антитела, у них брали селезенку и лимфатические узлы (места скопления АОК), и из них готовили взвесь клеток. К ней добавляли в избытке клетки мутантной плазмоцитомы и полиэтиленгликоль (ПЭГ). После короткой инкубации, требующейся для слияния клеток, их отмывали от ПЭГа и помещали в среду, содержащую Г, Т и А (ГАТ-среда). Теперь в системе находились гибриды АОК и АОК, АОК и плазмоцитомы, а также оставшиеся свободными АОК и клетки плазмоцитомы. Из них нужно было отобрать только гибриды АОК и плазмоцитомы. После недолгого (несколько дней) культивирования одиночные АОК, а также гибриды АОК и АОК погибали, так как нормальные клетки смертны и быстро погибают в культуре. Плазмоцитомные клетки и их гибриды также погибали, так как А блокировал основной путь синтеза предшественников нуклеиновых кислот, а Г и Т их не спасали. Выживали, следовательно, только гибриды АОК и плазматических клеток, так как бессмертие они унаследовали от плазмоцитомы, а резервный путь - от нормальной клетки. Такие гибриды, гибридомы, сохраняли способность синтезировать и секретировать антитела.

Следующий этап после получения гибридом - клонирование и отбор нужных клонов. Выжившие в ГАТ клетки рассевали в специальные пластиковые планшеты, содержащие обычно 96 лунок емкостью примерно по 0,2 см2. В каждую лунку помещали в среднем по 10 гибридомных клеток, которые культивировали в присутствии «кормящих» клеток, не имеющих отношения к гибридомам, но способствующих их росту. После нескольких дней культивирования содержимое каждой лунки проверяли на присутствие антител нужной специфичности. Для этого использовали микрометоды выявления антител к соответствующему антигену. Клетки из лунок, содержащих нужные антитела, клонировали, то есть повторно рассевали по таким же лункам, но из расчета 1 клетка на лунку, вновь культивировали и проверяли на присутствие нужных антител. Процедуру повторяли 1-2 раза. Таким образом, отбирали клоны, продуцирующие антитела только одной нужной специфичности, то есть моноклональные антитела. Полученные клоны можно заморозить при – 700 С и хранить до того, пока они не потребуются. Их можно культивировать и накапливать антитела в культуральной среде, а можно привить мышам (так как гибридомы - это опухолевые клетки), где они будут расти, и накапливать колоссальные количества моноклональных антител. От одной мышки можно получить антител не меньше, чем от кролика. Эти антитела не содержат посторонних антител и настолько однородны физико-химически, что могут рассматриваться как чистые химические реактивы.

Обычные поликлональные антитела давно и широко применяются для определения биологически активных веществ - белков крови и других биологических жидкостей, гормонов, ростовых факторов, клеточных рецепторов, медиаторов воспаления и иммунитета, бактериальных и вирусных антигенов, различных ядов и т.п. Моноклональные антитела из-за высочайшей специфичности, стандартности и технологичности получения успешно вытесняют и заменяют иммунные сыворотки.

Далее гибридомы создают уникальные возможности в аналитических целях: их можно применять как «иммунологический микроскоп» с чрезвычайно высоким разрешением. Так, например, если нужно сравнить две клеточные линии, отличающиеся одним или немногими антигенами, и надо выявить такие антигены, то метод гибридом предоставляет для этого исключительные возможности. Проиммунизировав мышей одной из линий и получив сотни гибридом, продуцирующих антитела к антигенам этой линии, можно найти одну или две с антителами только к данной линии. Размножив такую гибридому в пробирке или вырастив ее на мышах, можно получить огромное количество антител к уникальному антигену (или детерминантной группе), затерянному среди других компонентов клетки подобно иголке в стоге сена. Это будет продукт одного клона. В крови иммунизированного животного среди множества других антител он никак не проявится из-за чисто количественных отношений. Благодаря гибридомам его можно не только обнаружить, но и вывести в линию и получить любое количество соответствующих антител. С помощью гибридом можно обнаружить антигены, характерные для опухолей определенных тканей, получить к ним антитела и использовать их для диагностики и типирования опухолей. Такие моноклональные антитела нашли широкое применение в онкологической клинике. Наконец, во всем мире ведутся активные исследования по использованию моноклональных антител в качестве специфических переносчиков токсических веществ в опухолевые клетки. Пока же с помощью моноклональных антител в опухоль и ее метастазы доставляются радиоактивные вещества, позволяющие обнаружить небольшие узелки опухоли по локализации в них радиоактивности.

Гибридомы сыграли и продолжают играть огромную роль в фундаментальной и прикладной иммунологии. Они созданы на основе клонально-селекционной теории иммунитета и явились самым ярким и окончательным доказательством этой теории. Гибридомы сделали реальностью предполагаемые клоны антителообразующих клеток и позволили даже обнаружить их существование в организме до введения соответствующего антигена.

Гибридомы революционизировали иммунологическую промышленность и создали в ней совершенно новые области. Благодаря гибридомам возникли новые методы диагностики многих заболеваний и открылись новые пути для изучения злокачественных опухолей. И хотя гибридомы скорее относятся к изобретениям, а не к открытиям, они были отмечены в 1984 году Нобелевской премией, высшей научной наградой, присуждаемой за выдающиеся открытия. Особо следует отметить бескорыстность авторов. Если бы Кёлер и Мильштейн запатентовали свой метод, они вскоре бы стали миллиардерами, так как все, кто использовал бы гибридомы в коммерческих целях, должны были бы платить за право пользоваться патентом. Авторы гибридом, несомненно, понимали это, но в интересах развития науки не пошли на такой шаг. Метод гибридом беспрепятственно вошел во все сферы иммунологии, и сами авторы всемерно способствовали этому, предоставляя свою клеточную линию плазмоцитомы для исследований всем желающим. И первые гибридомы в нашей стране, полученные в 1979-1980 годах, были созданы на основе клеток, ведущих происхождение из лаборатории этих авторов и с их разрешения.

Как отмечалось, клетки животных, дифференцируясь, лишаются тотипотентности, и в этом - одно из существенных их отличий от клеток растений. Именно здесь главное препятствие для клонирования взрослых позвоночных животных. Методы клонирования целых животных до сих пор не доведены до стадии практического («промышленного») применения.

Наиболее удачными являются эксперименты по клонированию животных из эмбриональных недифференцированных клеток, не утративших тотипотентных свойств, однако есть положительные результаты и со зрелыми клетками. Процесс клонирования протекает следующим образом - ядро соматической клетки пересаживают в лишенную ядра (энуклеированную) яйцеклетку и имплантируют ее в организм матери (если это животное, требующее вынашивания).

Энуклеация традиционно проводится микрохирургически или путем разрушения ядра ультрафиолетом, пересадка производится с помощью тонкой стеклянной пипетки или электрослиянием. В последнее время ученые из датского Института сельскохозяйственных наук разработали недорогую технологию клонирования, которая гораздо проще используемой ныне. По новой технологии, яйцеклетки разрезаются пополам, и половинки с ядрами выбрасываются. Выбирается пара оставшихся пустых половинок, которые «склеиваются» в одну яйцеклетку после добавления нового ядра. Самая дорогая часть оборудования, которую использовали в этом эксперименте, — машина для «сварки» клеток — стоит всего лишь $3,5 тысячи. Технология может быть полностью автоматизирована и поставлена «на поток».

Успешность пересадки зависит от вида животного (амфибий клонируют успешнее, чем млекопитающих), методики пересадки и степени дифференцировки клетки-донора. Так, ещё Бриггс и Кинг в первых опытах на амфибиях установили, что если брать ядра из клеток зародыша на ранней стадии его развития бластуле, то примерно в 80% случаев зародыш благополучно развивается дальше и превращается в нормального головастика. Если же развитие зародыша, донора ядра, продвинулось на следующую стадию - гаструлу, то лишь менее чем в 20% случаев оперированные яйцеклетки развивались нормально. Эти результаты позже были подтверждены и в других работах.

Гердон (см. выше), использовавший в качестве доноров специализированные клетки эпителия, получил следующие результаты: в большинстве случаев реконструированные яйцеклетки не развивались, но примерно десятая часть их них образовывала эмбрионы. 6,5% из этих эмбрионов достигали стадии бластулы, 2,5% - стадии головастика и только 1% развился в половозрелых особей. Однако появление нескольких взрослых особей в таких условиях могло быть связано с тем, что среди клеток эпителия кишечника развивающегося головастика довольно длительное время присутствуют первичные половые клетки, ядра которых могли быть использованы для пересадки. В последующих работах, как сам автор, так и многие другие исследователи не смогли подтвердить данные этих первых опытов.

Позже Гердон модифицировал эксперимент. Поскольку большинство реконструированных яйцеклеток (с ядром клетки кишечного эпителия) погибают до завершения стадии гаструлы, он попробовал извлечь из них ядра на стадии бластулы и снова пересадить их в новые энуклеированные яйцеклетки (такая процедура называется «серийной пересадкой» в отличие от «первичной пересадки»). Число зародышей с нормальным развитием после этого увеличивалось, и они развивались до более поздних стадий по сравнению с зародышами, полученными в результате первичной пересадки ядер. Таким образом, во многих работах показано, что в случае амфибий донорами ядер могут быть лишь зародыши на ранних стадиях развития, хотя и клоны дифференцированных клеток удавалось «доводить» до поздних стадий, особенно при использовании метода серийных пересадок.

Опыты с амфибиями показали, что ядра различных типов клеток одного и того же организма генетически идентичны и в процессе клеточной дифференцировки постепенно теряют способность обеспечивать развитие реконструированных яйцеклеток, однако серийные пересадки ядер и культивирование клеток in vitro в какой-то степени увеличивает эту способность.

У млекопитающих в качестве доноров используются малодифференцированные стволовые клетки или клетки ранних эмбрионов. Работа методически оказалась довольно трудной, прежде всего потому, что объем яйцеклетки у млекопитающих примерно в тысячу раз меньше, чем у амфибий. Однако эти трудности были успешно преодолены. Экспериментаторы научились микрохирургически удалять пронуклеусы из зигот (оплодотворенных яйцеклеток) млекопитающих и пересаживать в них клеточные. Опыты на мышах закончились полной неудачей - клоны гибли на стадии бластоцисты, что связано, очевидно, с очень ранней активацией генома зародыша - уже на стадии 2-х клеток. У других млекопитающих, в частности, у кроликов, овец и крупного рогатого скота, активация первой группы генов в эмбриогенезе происходит позднее, на 8-16-клеточной стадии. Возможно, поэтому первые значительные успехи в клонировании эмбрионов были достигнуты на других видах млекопитающих, а не на мышах. Для кроликов (Стик и Робл, 1989) был получен результат - 3,7% реконструированных яйцеклеток развились до нормальных животных.

Работа с реконструированными яйцеклетками крупных домашних животных, коров или овец, идет несколько по-другому. Их сначала культивируют не in vitro, a in vivo - в перевязанном яйцеводе овцы - промежуточного (первого) реципиента. Затем их оттуда вымывают и трансплантируют в матку окончательного (второго) реципиента — коровы или овцы соответственно, где их развитие происходит до рождения детеныша. По данным одних авторов реконструированные зародыши лучше развиваются в яйцеклетке, чем в культуральной среде, хотя некоторые исследователи получили неплохие результаты и при культивировании.

Таким образом, была в целом решена проблема клонирования крупного рогатого скота. Например, в одном из экспериментов, 92 яйцеклетки из 463 развились до взрослых коров.

Позднее были получены клоны овец, что рассмотрено ранее. Большое значение имел тот факт, что авторы, учитывая результаты своих предыдущих работ, синхронизировали стадии клеточного цикла яйцеклеток реципиентов и клеток доноров. Из других млекопитающих были успешно клонированы свиньи.

Из изложенного выше следует, что методически или технически клонирование взрослых млекопитающих разработано еще недостаточно для практического применения. Для этого необходимо расширить круг исследований, включив в него, кроме овец, представителей и других видов животных. Такие работы необходимы, чтобы установить, не ограничивается ли возможность клонирования взрослых млекопитающих особенностями или спецификой какого-либо одного или нескольких видов.

Затем необходимо существенно повысить выход жизнеспособных реконструированных эмбрионов и взрослых клонированных животных, выяснить, не влияют ли методические приемы на продолжительность жизни, функциональные характеристики и плодовитость животных. Для клонов высок риск дефектного развития реконструированной яйцеклетки, главной причиной которого может быть неполное репрограммирование генома донорского ядра.

Что же касается возможности клонирования человека, который вызвал бурную реакцию общества, то о ней говорить пока не приходиться. Перспективным направлением в технологии клонирования животных является изучение генетических механизмов развития и дифференцировки клеток. Так, Рудольф Яниш из Whitehead Institute обнаружил, что 70-80 генов, которые обычно активизируются в развивающихся мышиных эмбрионах, у клонов оказываются либо неактивны, либо демонстрируют пониженную активность. Хотя непонятно, что же делают эти гены, однозначно установлено, что они включаются одновременно с еще одним геном, Oct4. Этот ген, в свою очередь, дает эмбрионам возможность создавать плюрипотентные клетки - то есть клетки, которые могут превратиться в любую ткань. Возможно, что часть активизирующихся одновременно с этим генов также задействуется в этом процессе. Теперь ученым предстоит выяснить, что заставляет эти гены молчать. В случае удачи наука сделает важный шаг вперед в разработке методологии клонирования.

Большие перспективы видят ученые в сочетании клонирования и трансгенеза. Трансгенез - это техника переноса экзогенной ДНК, то есть генов, через клетки зародыша в целый новый организм. Эксплуатируя этот метод, можно получать животных, несущих качественно новые признаки. Например, возможно создание пород, устойчивых к заболеваниям или несущих новые, полезные для промышленной деятельности человека признаки. С распространением трансгенеза процесс создания новых пород и линий продуктивных животных значительно ускорится. Кроме того, этот метод позволяет уже в настоящее время перенести исследования функциональной активности генов in vitro (на культурах клеток) в условия in vivo (на живых организмах), что важно для понимания фундаментальных основ жизни. По мнению многих видных ученых, технология создания трансгенных животных - это одна из наиболее захватывающих отраслей науки, появившихся в последние два десятилетия.

Производство человеческих рекомбинантных медицинских препаратов из молока трансгенных животных служит выходом из многих затруднений, связанных с микробными биореакторами, таких как отсутствие у бактерий посттрансляционных модификаций белков, неправильное складывание молекул синтезируемого вещества, высокие расходы на очищение. Использование клеточных культур животных в качестве биореакторов характеризуется высокими расходами на культуральные среды и невысоким выходом продукта. Поэтому многие специалисты в области клонирования видят главную задачу в применении технологии переноса ядер для создания и размножения трансгенных животных с полезными свойствами.

В настоящее время существуют разные технологии создания трансгенных животных. Наиболее распространенная - это микроинъекции генных конструкций в пронуклеусы зигот млекопитающих. Серьезным препятствием на пути использования этого метода является низкая эффективность его применения у сельскохозяйственных видов животных (<1%). Техника переноса ядер может помочь в решении и этой проблемы.

Создание трансгенных животных методом клонирования, как правило, начинается с получения культуры клеток-доноров ядер. В 1997 г. И. Уилмут, К. Кэмпбелл и др. выделили культуру овечьих фетальных фибробластов из плодов на 35-дневном сроке суягности. На втором этапе фибробласты трансфицировались экзогенной ДНК: двумя генными конструкциями, одна из которых несла ген 9-го фактора свертывания крови (ген интереса) под бета-глобулиновым промотором, вызывающим экспрессию в молочной железе овец, а другая - ген устойчивости к антибиотику неомицину (маркерный), который позволил отобрать трансфицированные клоны, а они в дальнейшем подвергались анализу на содержание нужного гена. Перенос ядер трансфектантов в энуклеированные ооциты происходил по методике, использованной при клонировании Долли. В итоге было получено три трансгенных ягненка, несущих оба гена: маркерный и ген интереса. Белок 9-й фактор свертывания крови играет важную роль в коагуляции крови, его недостаток вызывает гемофилию В.

В настоящее время он производится из человеческой сыворотки, поэтому выработка этого белка из молока овец могла бы стать альтернативным источником, лишенным потенциальной возможности переноса инфекционных заболеваний. Это было первое сообщение о рождении трансгенных животных в результате применения технологии клонирования. Уже известно о получении с использованием метода переноса ядер трансгенных мышей, крупного рогатого скота, овец и коз. В качестве доноров ядер использовались как трансфицированные культуры эмбриональных фибробластов, так и эмбриональных стволовых клеток.

Клонирование ценных трансгенных животных может быстро и экономично обеспечить человечество новыми лекарственными препаратами, содержащимися в молоке, специально полученных для этого генноинженерными методами овец, коз или коров. Появилось сообщение, что ученым из шотландской фирмы PPL Therapeutics, того самого, где была клонирована Долли, удалось получить успешные клоны овечек с измененной ДНК. Был внедрен ген, который добавляет в молоко овец фермент, используемый в современной фармакологии для лечения наследственной эмфиземы легких. При создании Долли половой процесс был «обойден», что позволило исключить случайно приобретаемые при скрещивании гены и открыть дорогу «чистому» генетическому программированию. Следующим шагом шотландских ученых стало выведение клонированных овец, которые имеют специальный ген, позволяющий им производить молоко с такими же белками, как у человека. По словам директора фирмы PPL Therapeutics Алана Колмена, «значение подобной методики заключается в том, что теперь мы можем выбирать еще до рождения гены, которые хотим изменить или удалить». А это уже означало принципиальную возможность выращивать для трансплантации человеческие ткани и органы внутри, к примеру, свиней, наиболее близких нам по ряду важных биологических параметров.

Несмотря на массовый ажиотаж по поводу достижений в области клонирования и многочисленные спекуляции в прессе и на телевидении в недавнем прошлом, принимая во внимание последние открытия в этой области, возникает больше вопросов, чем ответов на них. В настоящее время сама возможность получения стабильных клонов ставится под сомнение. Эпигенетическая модификация генома обеспечивает активацию определенных генов в разные периоды развития и включает метилирование ДНК, специфическое соединение гистонов в нуклеосомы и ремоделирование других хроматинассоциированных протеинов. Оба родительских генома формируются в течение гаметогенеза таким образом, чтобы соответствовать цитоплазматическому составу яйцеклетки и направлять развитие всего организма.

Чтобы успешно реализовать генетическую информацию, ядро соматической клетки после трансплантации должно быстро репрограммироваться для экспрессии генов, включаемых на ранних этапах развития. В 80-х годах Д. Солтер и другие исследователи установили, что отцовский и материнский геномы функционально неидентичны и оба необходимы для нормального развития. Такое явление называется геномным импринтингом (см. 1.3). Оно заключается в том, что из двух аллелей одного гена в гомологичных хромосомах после оплодотворения может быть функционально активным только отцовский или только материнский.

Нормальное развитие требует правильной экспрессии импринтированных генов. У клонированных животных из-за неполного репрограммирования ядра соматической клетки и нарушения экспрессии импринтированных генов возникает эпигенетическая нестабильность генома. Несоответствующий данному гену уровень метилирования изменяет его активность и может приводить к его полной инактивации или наоборот - к его активированию. Большинство процессов в организме находятся под двойным, тройным и т. д. контролем со стороны генетического аппарата клетки, благодаря этому в результате трансплантации ядер относительно часто рождается и вырастает полноценный молодняк. Исследователям не удалось идентифицировать гены, нарушение регуляции которых приводило бы к часто встречающейся патологии плаценты и аномальному весу у клонированных мышей. Возможно, что это результат кумулятивного воздействия многих неправильно экспрессирующихся генов. Выдвигается гипотеза, что развитие млекопитающих скорее толерантно к эпигенетической нестабильности и летальный эффект проявляется только при потерях нормальной регуляции во множественных локусах. Внешне здоровые клонированные животные могут иметь различные физиологические нарушения, которые трудно обнаружить.

До сих пор неизвестно, почему не удается размножить последовательным клонированием мышей далее 6-го поколения. Это может быть связано с накоплением в поколениях мутаций в соматических клетках или с укорочением в каждом раунде репликации концевых участков хромосом – теломер (см. 1.2). Процесс репликации ДНК при делении клеток происходит таким образом, что теломеры в течение жизни человека или животного укорачиваются. Существует фермент теломераза, который достраивает концевые участки хромосом, однако высокой теломеразной активностью обладают только тотипотентные клетки на ранних стадиях эмбрионального развития в период повышенного количества митозов и терминальные, которые дают начало гаметам.

Теломераза усиленно синтезируется также в опухолевых клетках, характеризующихся способностью к неограниченному делению. С укорочением концевых участков хромосом связывают в настоящее время процессы старения организма человека: когда теломеры достигают определенной длины, дальнейшее деление клеток становится невозможным, и ткани утрачивают свою регенерационную и функциональную активность. Так как при трансплантации ядер донором служат соматические клетки, не экспрессирующие теломеразу, для установления генетического возраста клонального животного определяется статус теломер в его клетках. Именно таким образом было показано, что первая клонированная из соматических клеток овца Долли генетически старше своих ровесников. Укорочение теломер у клонов в дальнейшем не подтвердилось в опытах на крупном рогатом скоте. Как оказалось, теломеразная активность заново возникает в клонированных эмбрионах и происходит восстановление концов хромосом до нормальной длины.

Клонирование млекопитающих это одна из захватывающих проблем современной биологии, однако, попытки создания клонов нельзя назвать успешными. Большая часть реконструированных зародышей не развивается далее ранних эмбриональных стадий, из родившихся около половины не достигают взрослого состояния, и нет уверенности в том, что взрослые клоны - абсолютно здоровые животные. Изучение фундаментальных основ генной экспрессии и генетического контроля развития поможет объяснить причины затруднений, с которыми сталкивается новое направление. Технология клонирования уже внесла огромный вклад в наше понимание ранних процессов развития, взаимодействия родительских геномов, репрограммирования ядер и геномного импринтинга. Было бы близорукостью отвергнуть метод трансплантации ядер, пока мы в точности не узнаем все возможные перспективы его использования.

Клонирование человека: этические проблемы. Принципиальная возможность клонирования человека вызвала бурное обсуждение во всем мире. С одной стороны появились горячие поклонники клонирования (вплоть до создания религиозных сект), видящие в нем возможность улучшения человеческой природы, достижения бессмертия или, по крайней мере, радикальный метод борьбы с болезнями. С другой стороны, еще более многочисленны голоса решительных противников всяких попыток клонирования человека. Традиционно консервативную позицию, занимают, в частности, представители ведущих религий.

Во многом, споры вокруг проблемы связаны с распространенной в обществе генетической безграмотностью. Опросы, проведенные в США, показали, что значительное число американцев боится создания «армий клонов», «выведения суперрасы». Есть люди, которые искренне считают, что с помощью клонирования можно в буквальном смысле возродить умерших людей и т.д. Но даже если оставить в стороне явные заблуждения, а также апелляции к религиозным чувствам, которые разделяют далеко не все, все равно остаются реальные этические проблемы. Репродуктивное клонирование вызывает следующие возражения: крайне низкая результативность клонирования, высокая летальность среди клонов делают попытки клонирования человека этически неприемлемыми, вплоть до усовершенствования методики до приемлемого уровня безопасности для клона.

Неизвестно, как будет влиять на развитие человека и структуру общества новый тип семейных отношений, который может сложиться в связи с распространением клонирования.

Предполагают, что клоны будут иметь проблемы со становлением
личностного самосознания, с интеграцией в человеческое общество.

Клонирование ограничивает генетическое разнообразие человека. Терапевтическое клонирование вызывает вопросы в связи с технологией его проведения. В настоящее время реально осуществима только технология клонирования, предполагающая выращивание клона до определенного предела in vivo. Естественно, к человеку это не применимо - женщина не может рассматриваться как инкубатор терапевтического материала. Эта проблема решается разработкой оборудования для выращивания зародыша in vitro. Однако, остается проблема «убийства» зародыша. С каких пор зародыш становится человеком? Существует мнение, что новый человек возникает в момент зачатия (в случае клона - в момент пересадки ядра). В этом случае использование зародыша для выращивания трансплантатов недопустимо. На это возражают, что до определенного периода зародыш представляет лишь скопление клеток, но никак не человеческую личность. Для преодоления этой проблемы ученые пытаются начать работу с зародышем как можно раньше. Констатируем, что отношение общества к репродуктивному клонированию в целом отрицательное. Во всех странах, где уже разработано законодательство по клонированию, репродуктивное клонирование запрещено. Однако остается немало государств, не регулирующие вопросы клонирования, чем и пользуются научные авантюристы, пытающиеся (или делающие вид, что пытаются) клонировать человека.

К терапевтическому клонированию отношение более мягкое, что, видимо, вызвано его большей ценностью. Если трудно представить практическое применение репродуктивного клонирования (разве, что случаи бесплодия с невозможностью искусственного оплодотворения), то значение терапевтического клонирования, несомненно. Так, в Великобритании терапевтическое клонирование официально разрешено. При этом жестко ограничивается возраст эмбриона, с которым можно вести работу (в Британии - не более 10 недель).

Терапевтическое клонирование и его перспективы в медицине. Термин «терапевтическое клонирование» означает метод получения клеточных культур- трансплантатов, который заключается в том, что ядро соматической клетки пациента (например, кожных фибробластов) переносится в энуклеированный донорский ооцит. После процесса репрограммирования это ядро становится тотипотентным и инициирует формирование эмбриона, который на определенной стадии развития может использоваться для получения культуры эмбриональных стволовых клеток (ЭС клетки), обладающих ядерным геномом пациента. Культура ЭС клеток подвергается воздействию веществ- индукторов, вызывающих направленную дифференциацию в определенный тип клеток, например, в такие как кардиомиоциты для замещения поврежденного участка миокарда или в синтезирующие инсулин бета-клетки островков Лангерганса. В настоящее время разрабатываются другие методы получения ЭС клеточных культур с использованием технологии генетической модификации генома для отбора дифференцированных популяций.

Успешно проведенные эксперименты по клонированию макак-резус американскими учеными Л. Менг и др. из центра по изучению приматов в Орегоне свидетельствуют о потенциальной возможности переноса технологии трансплантации ядер на человека. Л. Менг и соавт. получили двух макак-резус в результате переноса ядер бластомеров из ранних эмбрионов. Ввиду значительного сходства физиологии и генетики у человека и остальных приматов для изучения процессов репрограммирования генома, развития клонов, как во время протекания беременности, так и в постнатальный период и их эпигенетической стабильности нечеловеческие приматы могут служить самой оптимальной моделью.

Прежде чем станет возможным всерьез воспринимать заявления о внедрении терапевтического клонирования в медицине необходимо добиться клонирования обезьян с использованием соматических дифференцированных клеток. Эффективность реконструкции эмбрионов приматов будет зависеть от оптимизации многих параметров. Наши представления о процессах созревания яйцеклеток в условиях in vitro все еще являются неполными, требуют усовершенствования протоколы слияния кариопласта с цитопластом и активации генома. Электрослияние не считается в настоящее время наиболее эффективным методом для соединения донорского ядра с энуклеированной яйцеклеткой: электрический импульс вызывает одновременно активацию реконструированного ооцита, вследствие чего в ядре не успевают завершиться процессы репрограммирования ядра. Уже разработаны методики по индукции слияния с использованием фитогемагглютинина, этиленгликоля и микрохирургическими методами, которые не вызывают одновременную активацию. Это позволяет отсрочить ее индукцию у прооперированного ооцита на 4-5 ч.

Согласно вышеупомянутой методике И. Тезарик, П. Наги и др. в 2000 г. переносили кариопласты зрелых человеческих ооцитов в другие энуклеированные ооциты на стадии метафазы П. Учеными изучались слияние кариопласта с цитопластом и спонтанная и химическая активация реконструированной яйцеклетки. Эта технология, по мнению исследователей, может найти применение при лечении бесплодия, связанного с недостаточностью функции цитоплазматических компонентов яйцеклеток. К подобным экспериментам необходимо относиться с большой осторожностью, поскольку сама методика механического переноса кариопласта, воздействие на яйцеклетку химических агентов слияния могут иметь непредсказуемые последствия.

Даже внедряемая технология переноса незначительного количества цитоплазмы от ооцита здорового донора в реципиентную яйцеклетку пациента в настоящее время подвергается активной критике из-за возможной дисрегуляции во взаимоотношениях между ДНК ядра и митохондрий. Отрицательный эффект генетического химеризма может быть еще более сильным при тотальной замене цитоплазматического окружения кариопласта и проявиться в виде нарушений различной природы как во внутриутробный период развития, так и после рождения организма.

Новейшие технологии в области клонирования и создания эмбриональных стволовых клеток открывают огромные возможности для лечения многих заболеваний, связанных с дегенерацией определенных типов клеток, потерей функций тканей и целых органов. Около 16 млн. человек во всем мире страдают нейродегенеративными заболева


Поделиться:

Дата добавления: 2015-09-14; просмотров: 237; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты