КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Построение параболы. ⇐ ПредыдущаяСтр 5 из 5 Построим часть параболы, расположенной в верхней полуплоскости, которая выражается уравнением . При р>0 : если , то для у получаем мнимые значения. Парабола расположена вверх от оси Ох, т.е. в положительном направлении оси Оу. у изменяется от 0 до + , х также изменяется от 0 до + . Левая часть параболы получается путем зеркального отображения правой части относительно Оу.
Если Е = 0 и F1 > 0, то уравнение A(x – x0)2 = =F1 равносильно уравнениям , , которые определяют пару параллельных прямых. Если Е = 0 и F1 < 0, то получим также уравнение A(x – x0)2 = F1, которому соответствует пустое множество. Если Е = 0 и F1 = 0, то A(x – x0)2 = 0. Оно определяет пару совпадающих прямых x – x0 = 0.
Если предположить, что А ≠ 0, С = 0, то уравнение (1) будет иметь вид: Cy2 + Dx + Ey + F = 0. Аналогично предыдущему можно показать, что при D = 0 это уравнение определяет параболу с осью симметрии, параллельной оси Ох, и может быть приведено к виду x – x0 = а(y – y0)2. Если D = 0, то уравнение определяет пару параллельных прямых или пустое множество.
Пример: Привести к каноническому виду уравнение 9х2 +4у2 –18х + 24у+9 = 0 А=9, В=0, С=4. Т.к. АС = = 36 > 0, то уравнение определяет фигуру эллиптического типа. Дополнив до полных квадратов, получим 9(х - 1)2 + 4(у + 3)2 = 36; . Эллипс, центр которого в точке О1(1; -3), а полуоси равны 2 и 3. х = х΄ + 1 у = у΄ - 3 а2 = 4, b2 = 9 и а = 2, b = 3, 2а = 4 – малая ось, 2b = 6 – большая. Полуфокусное расстояние: c2 = b2 – a2 = 9 – 4 = 5; c = . Координаты фокусов: F1 = (0; ), F2 = (0;- ) Эксцентриситет .
|