КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Распределение БольцманаВ барометрической формуле в отношении M/R разделим и числитель и знаменатель на число Авогадро . , где масса одной молекулы, постоянная Больцмана. Вместо Р и подставим соответственно. (см. лекцию №7), где плотность молекул на высоте h, плотность молекул на высоте . Из барометрической формулы в результате подстановок и сокращений получим распределение концентрации молекул по высоте в поле силы тяжести Земли. Из этой формулы следует, что с понижением температуры число частиц на высотах, отличных от нуля, убывает (рис. 8.10), обращаясь в 0 при Т=0 (при абсолютном нуле все молекулы расположились бы на поверхности Земли). При высоких температурах n слабо убывает с высотой, так
.Следовательно, распределение молекул по высоте является и распределением их по значениям потенциальной энергии.
где плотность молекул в том месте пространства, где потенциальная энергия молекулы имеет значение ; плотность молекул в том месте, где потенциальная энергия равна 0. Больцман доказал, что распределение (*) справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения. Таким образом, закон Больцмана (*) даёт распределение частиц, находящихся в состоянии хаотического теплового движения, по значениям потенциальной энергии. (рис. 8.11)
|