Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Упаковка в газовой среде




Для упаковывания свежих овощей, фруктов, пищевых продуктов, кулинарных, хлебобулочных, кондитерских изделий используют герметичные упаковки с регулируемым и модифицированным составом газовой среды.

Газообразная смесь любого состава внутри упаковки приводит к резкому снижению скорости процесса «дыхания» продукта (газообмен с окружающей средой), замедлению роста микроорганизмов и подавлению процесса гниения, следствием чего является увеличение срока хранения продукта в несколько раз.

Различают следующие способы упаковывания в газовой среде:

- в среде инертного газа (N2, СО2, Аr);

- в регулируемой газовой среде (РГС), когда состав газовой смеси должен изменяться только в заданных пределах, что требует значительных капиталовложений в оборудование и больших расходов на обеспечение оптимальных условий хранения продукции;

- модифицированной газовой среде (MГС), когда в начальный период в качестве окружающей среды используется обычный воздух, а затем в зависимости от природы хранящихся продуктов и физических условий окружающей среды, устанавливаются модифицированные условия хранения, но в довольно широких пределах по составу газа.

В технологии упаковывания из соображений технологичности, экономичности и сохранности продукта большее распространение получило упаковывание в модифицированной газовой среде (МГС).

Основными газами, применяемыми для упаковки в MГС, являются кислород, углекислый газ и азот, соотношение которых, особенно О2, зависит от типа упаковываемого продукта. Кислород является основным газом и его содержание для упаковывания различных продуктов может колебаться от 0 до 80% (таблица 1.4).

Инертный газ азот используется как наполнитель газовой смеси внутри упаковки, так как он не изменяет цвета мяса и не подавляет рост микроорганизмов.

Углекислый газ подавляет рост бактерий, и при использовании его на ранних стадиях развития микроорганизмов срок хранения упаковываемого продукта может значительно увеличиться.

 

Таблица 1.4 – Рекомендуемые условия хранения пищевых продуктов и состав МГС

Продукты питания Температура Состав газовой смеси, %
О2 СО2 N2
«Дышащие»:
яблоки 0-5 2-3 1-2 равновесное
клубника 0-5 15-20 -//-
лук зеленый 0-5 2-5 0-2 -//-
грибы 0-5 10-15 -//-
помидоры 8-12 3-5 -//-
«Не дышащие»:
мясо в ломтиках 0-2
мясо красное 0-2
цыплята 0-2
белая рыба 0-2
жирная рыба 0-2
охлажденные блюда 0-2
Сыр 0-2
Выпечка 20-22
Пасты 0-5

 

Пищевые продукты можно условно разделить на две группы: «дышащие» (с биохимической метаболической активностью) и «не дышащие» (приготовленные блюда, пасты и др.). В зависимости от этого рекомендуют условия хранения продукта и состав МГС.

При упаковке «дышащих» и «не дышащих» продуктов состав газовой среды существенно отличается: для свежих мясных продуктов с целью сохранения исходного красного цвета в смеси указанных, газов должно быть повышенное содержание О2 и СО2; (например, 80-90% и 20-10% соответственно), а при упаковывании свежих фруктов и овощей пониженное содержание О2 (до 3-8%) и повышенное содержание СО2 (до 15-20%), так как снижение содержания кислорода и повышение содержания углекислого газа замедляют созревание фруктов, задерживают появление мягкости и снижают скорость химических реакций, сопровождающих созревание. Однако при сверхнизком содержании O2 может появиться анаэробное дыхание и нежелательный аромат (вследствие накапливания молекул этанола и ацетальдегида), а повышенное содержание O2 приводит к появлению ожогов на фруктах и коричневых пятен на другом растительном сырье.

Опыты показали, что оптимальный состав газовой среды для разной свежей продукции индивидуален, но необходимо соблюдать соотношение РСО2О2>1,6, которое зависит от сорта.

Таким образом, выбор упаковочного материала для хранения овощей и фруктов в МГС определяется скоростью «дыхания» продукта и его проницаемостью по отношению к атмосферным газам, а также температурой хранения.

Указанным требованиям по проницаемости отвечают следующие полимерные пленочные материалы: ПЭВД, ориентированный ПП, ПВХ, ПС, ПЭТФ, ПА, саран, СЭВ и др., а также различные ламинаты. Первые два чаще всего используют для упаковки свежих фруктов и овощей. Низкая общая газопроницаемость полиэфирных пленок и пленки «саран» обуславливает их использование для упаковывания тех продуктов, которые обладают низкими скоростями газообмена.

Высокие барьерные свойства по кислородо- и влагонепроницаемости достигаются при использовании комбинированных, ламинированных и соэкструзионных материалов.

В качестве селективно-проницаемых упаковок для некоторых сортов овощей и фруктов применяют полимерные пленки с микропористыми отверстиями диаметром от 5 до 500 мкм, изготовляемые холодной штамповкой или лазерным способом. Повышению качества и срока сохранения продуктов, упаковываемых в МГС и РГС, служит использование поглотителей (газопоглощающих веществ), вводимых в состав полимерной упаковки или укладываемых внутрь нее вместе с пищевыми продуктами.

В качестве поглотителей используют вещества, абсорбирующие молекулы О2, СО2 или этилена (гашеная известь, активированный древесный уголь, MgO – для поглощения СО2, порошкообразное железо – для поглощения О2, KMnO4, порошок строительной глины, фенилметилсиликон – для поглощения этилена и др.). Подбирая состав и количество поглотителей, можно точно регулировать состав газовой среды, создавая лучшие условия внутри упаковки.

Упаковывание в MГС производится на автоматических упаковочных линиях, работающих по схеме: изготовление – заполнение – запечатывание. Линии имеют несколько рабочих узлов: нагрев полотна упаковочного материала, термоформование упаковки, заполнение полостей упаковки продуктом, вакуумирование упаковки, заполнение свободного объема МГС, запечатывание упаковки. Машина обеспечивается системой подачи МГС.

Применение термоусадочной пленки упрощает процесс упаковывания в МГС, так как исключает приготовление пакетов и лотков заранее. Усаживаемая при нагреве пленка обладает высокой кислородонепроницаемостью даже в атмосфере с повышенным содержанием O2 (до 70-80%) и высокой ароматонепроницаемостью, хорошо сохраняет первичный цвет свежего мяса и витамин С в сухих концентратах фруктовых соков.

Этот способ упаковывания стал одним из основных, так как охватывает большой ассортимент продуктов, эффективен и экономичен в ряде случаев, позволяет создавать МГС внутри индивидуальной упаковки с различными порционными блюдами, транспортной тары и целых хранилищ, значительно повышая срок хранения продуктов. Основной проблемой массового распространение упаковок в МГС является невозможность изменения размера упаковки без изменения при этом общего бактериостатического действия углекислого газа и, соответственно, без повышения срока хранения упакованного пищевого продукта. Для решения этой проблемы в Италии был запатентован двухстадийный процесс хранения продуктов, основанный на использовании известного количества газообразного и твердого CO2.

Принцип упаковывания по этому способу, названный «двухфазным», состоит в том, что в упаковку с МГС дополнительно вкладывается некоторое количество «сухого льда», достаточное для насыщения продукта и установления равновесного состояния между содержимым упаковки и газовой средой внутри нее, при этом избыточное давление уравновешивается растворенной фазой.

Процесс упаковывания состоит из следующих операций: получение лотков термоформованием, укладка на лоток пищевого продукта и таблетки «сухого льда», замена воздуха на МГС и запечатывание упаковки.

Твердый углекислый газ внутри упаковки начинает возгоняться и давление повышается (гибкая крышка вспучивается), через 12 часов абсорбция газа прекращается и упаковка возвращается к своей первоначальной форме. При t=2-3°C продукт может храниться в течение 50 суток с сохранением высокого уровня гигиенических и органолептических свойств.

Проницаемость различных полимерных материалов приведена в таблице 1.5.

 

Таблица 1.5 – Газопроницаемость полимерных пленочных материалов

Материал пленки Газoпроницаемоcть
СО2 О2 N2
ПЭ ПП ПЭТ/ПЭ ПЭТ/ПП ПЭТ 0,020 мм ПЭТ металлизированный ПЭТ-ПП металлизированный 1,8-10-17 7,0-10-17 1,1-10-17 5,6-10-17 1,6-10-18 2,4-10-19 1,8-10-19 5,5-10-17 3,3-10-17 2,0-10-17 1,4-10-18 4,0-10-19 5,0-10-20 2,0-10-20 2,5-10-17 1,3-10-17 6,0-10-17 4,0 10-17 1,2-10-17 1,5-10-20 0,8-10-20

 


Поделиться:

Дата добавления: 2015-09-15; просмотров: 64; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты