![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Принцип двойственностиТеорема: Пусть функция h(x1, ..., xn) реализована формулой h(x1, ..., xn) = =g(G1, ..., Gm) = g(f1(x1, ..., xn), ..., fm(x1, ..., xn)), где какие-то переменные могут быть фиктивными. Тогда h*( x1, ..., xn) = g*(f1*( x1, ..., xn), ..., fm*(x1, …, xn)), это означает, что если функция задана некоторой формулой, то чтобы получить двойственную функцию, надо в этой формуле все знаки функций заменить на двойственные, 0 на 1, 1 на 0. Доказательство. h*(x1, ..., xn) = Если функция h(x1, ..., xn) реализуется формулой N[f1, ..., fn], то формулу, полученную из N заменой fi, входящих в нее, на fi* и реализующую функцию h*(x1, ..., xn), будем называть двойственной и обозначать N*(x1, ..., xn). Пример 4. Построить формулу, реализующую f*, если f = ((x Найдем (xÅy)* и (x
Из таблиц видно, что (x (x По принципу двойственности: f* = Тогда f = (f*)* = [z(xÅy)]* = zÚ(x~y). Пример 5. Найти формулу для f* и показать, что она эквивалентна формуле N = (xÚ(zÅt)) f* = ((xÚyÚz)Åt( = ( = =
|