Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Представление функции в виде полинома Жегалкина




Читайте также:
  1. Foreign Office – структура, функции…..
  2. III. Вегетативные функции НС.
  3. III. Функции полномочного представителя
  4. Performance-представление,спектакль
  5. SQL-функции
  6. Автоматизированное рабочее место. Его состав, функции, аппаратное и программное обеспечение.
  7. Ананда Марга: общее представление об НРД.
  8. Анатомия ствола головного мозга (структуры и функции).
  9. Анатомия, гистология, функции наружной оболочки глаза.
  10. Аритмии, обусловленные нарушением функции проводимости

 

1. Представим любую функцию формулой над {x1&x2, } и сделаем замену =xÅ1. Этот способ удобен, если функция задана формулой.

Пример 2. (x1 (x2 x3))(x1 Ú x2) x3 = (x1Ú x2 Ú x3)(x1 Ú x2) x3 = (`x1x2 Ú x1x3 Ú x1x2 Ú x2 Ú x2x3)x3 = (`x1x3 Ú x2)x3 = x1x3 x2 x3 = ((x1x3Å1)x2Å1)x3 = x1x2x3Åx2x3Åx3.

Надо помнить, что четное число одинаковых слагаемых в сумме по mod2 дает 0.

2. Метод неопределенных коэффициентов. Он удобен, если функция задана таблицей.

Пример 3. Запишем с неопределенными коэффициентами полином Жегалкина для функции трех переменных f(x1, x2, x3) = (01101001) = а0 Å а1х1Å Å а2х2 Å а3х3 Å b1x1x2 Å b2x2x3 Å b3x1x3 Å cx1x2x3. Затем находим коэффициенты, используя значения функции на всех наборах. На наборе (0, 0, 0) f(0, 0, 0) = 0, с другой стороны, подставив этот набор в полином, получим f(0, 0, 0) = а0, отсюда а0 = 0. f(0, 0, 1) = 1, подставив набор (0, 0, 1) в полином, получим: f(0, 0, 1) = а0 Å а3, т.к. а0 = 0, отсюда а3 = 1. Аналогично, f(0, 1, 0) = 1 = а2, f(0, 1, 1) = 0 = а2 Å а3 Å b2 = b2 = 0; а1 = 1; 0 = а1 Å а3 Å b3 = b3 = 0; 0 = а1 Å а2 Å b1 = b1 = 0; 1 = 1 Å 1 Å 1 Å c; c = 0; f(x1, x2, x3) = x1 Å x2 Å x3.

3. Многочлен Жегалкина можно получить также с помощью треугольника Паскаля по единицам его левой стороны по таблице следующим образом. Построим многочлен Жегалкина для функции f = (10011110). Верхняя сторона треугольника есть функция f. Любой другой элемент треугольника есть сумма по модулю для двух соседних элементов предыдущей строки. Левая сторона треугольника для функции f содержит шесть единиц. Многочлен Жегалкина будет содержать шесть слагаемых. Первая единица треугольника соответствует набору (000). Первое слагаемое многочлена есть 1. Третья снизу единица в левой стороне треугольника соответсвует набору (101). В качестве слагаемого многочлена берем x1x3. Аналогично для других единиц треугольника. Слева от наборов показаны слагаемые многочлена Жегалкина.

  N x1x2x3 f Треугольник Паскаля
x3 x2 x2x3 x1 x1x3 x1x2 x1x2x3 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0  
                 

 



Тогда


Дата добавления: 2014-11-13; просмотров: 24; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты