![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
L – класс линейных функций.L = {f(x1, ...)| f = c0Åc1x1Å...Åcnxn}; очевидно, L ¹ Æ, с другой стороны L ¹ P2, так как x1&x2 Ï L. Заметим, что тождественная функция принадлежит L и |L(n)| = 2n+1. Покажем, что [L] Í L. Рассмотрим Ф = f(f1, ..., fm), где f, f1, ..., fn Î L. Тогда Ф = а0 Å а1(с10 Å с11х1 Å...Å c1nxn1) Å a2(c20 Å c21x1 Å c22x2Å ...Å c2nxn2)Å...Å an(cm0 Åcm1x1 Å ... Å cmnxnm) = в0 Å в1х1 Å ...Å вnхn Þ ФÎL. 5) М – класс монотонных функций. Определение. Набор Определение. Функция f(x1, ..., xn) называется монотонной, если для двух наборов Для числа монотонных функций, зависящих от n переменных, существуют оценки сверху и снизу, но точное число сосчитать не удается. Покажем, что М замкнутый класс. Рассмотрим функцию ФÎ[M], Ф = f(f1, ..., fm), где f, f1, ..., fmÎM, причем можем считать, что все они зависят от n переменных. Пусть набор Определение. Функция f есть суперпозиция над M, если f реализуется некоторой формулой над M. Лемма о немонотонной функции. Отрицание можно получить суперпозицией констант 0 и 1, тождественной функции и немонотонной функции. Доказательство. Пусть f(x1, ..., xn) – немонотонная функция. Тогда существуют наборы Классы T0, T1, L, S, M пересекаются, но не совпадают, что видно из следующей таблицы, где «+» означает, что функция принадлежит данному классу и «-» – не принадлежит.
A={x, Задачи 1. Доказать, что пересечение любых двух замкнутых классов замкнуто. 2. Доказать, что объединение двух замкнутых классов не всегда замкнуто.
|