![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Составим критериальную таблицу для другой полной системы функций из Р2: {0, 1, x1x2, x1Åx2}.
Согласно критериальной таблице, полной является и система {1, x1x2, x1Åx2}. Константа 0 введена в эту систему для удобства, тогда мы можем записать полином Жегалкина в виде, где а 4. Выясним, полна ли система
и А – полная система функций. Определение. Система функций {f1, ..., fs, ...} называется базисом в Р2,если она полна в Р2, но любая ее подсистема не будет полной. Например, система функций {x1&x2, 0, 1, x1
|