![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Введение в логику высказываний
Определение. Высказыванием называется повествовательное предложение, о котором имеет смысл говорить, что оно истинно или ложно. Примеры высказываний: «2х2=4», «Волга впадает в Черное море», «Москва – столица России». Первое и третье высказывания истинны, второе – ложно. Предложение «х + y = 4» не является высказыванием, т.к. оно может быть истинным при некоторых значениях х и y и ложным при других значениях. Из простых, атомарных высказываний можно сооружать сложные высказывания. Например, из двух высказываний: «Москва стоит на берегу Невы» и «Санкт-Петербург стоит на берегу Невы», из которых первое ложно, второе истинно, можно соорудить более сложные высказывания: «Москва стоит на берегу Невы или Санкт-Петербург стоит на берегу Невы» (истинное) или «Москва стоит на берегу Невы и Санкт-Петербург стоит на берегу Невы» (ложное). В логике высказываний простые высказывания являются булевыми переменными, принимающими значения «истина» (и) или «ложь» (л). Переменной (и) соответствует 1, переменной (л) – 0. Для них стандартным образом определяются булевы функции: дизъюнкция высказываний, конъюнкция (два последних примера), отрицание, эквивалентность, сумма по mod 2 (исключающее «или»), импликация. Рассмотрим более подробно последнюю функцию Простые высказывания (булевы переменные) будем обозначать буквами Формула Формула Формула Формула С точки зрения логики тавтология – логический закон, так как при любой подстановке вместо переменных конкретных высказываний мы получаем истинное высказывание. Перечислим наиболее важные тавтологии (А, В, С – произвольные формулы): 1. 2. 3. 4. 5. 6. 7. 8. Любую из этих тавтологий можно обосновать, составив таблицу истинности и показав, что соответствующая функция есть константа. К этому же результату можно прийти с помощью эквивалентных преобразований. Докажем, что При доказательстве различных утверждений мы пользуемся «рассуждениями». Рассуждение называется правильным, если из конъюнкции посылок Пример 1. Рассмотрим следующее «рассуждение»: «Если число 5 – простое, то оно нечетное. Число 5 – нечетное, следовательно, оно простое». Число 5 действительно простое, но сами рассуждения неверны. Введем обозначения для высказываний: х – «5 – число простое», y – «5 – число нечетное». Тогда посылками будут На наборе х = 0, y = 1 формула принимает значение 0, следовательно, она не является тавтологией. Эта формула будет тавтологией, если х = y, т.е. простое число и нечетное число – эквивалентные понятия. «Здравый смысл подсказывает», что в этом случае, действительно, рассуждения верны. Пример 2. Если Петр занимается спортом, то Петр никогда не болеет. Петр занимается спортом, следовательно, он не болеет. Введем обозначения для высказываний: x – «Петр занимается спортом», y – «Петр не болеет». Схема рассуждений Распространенные схемы правильных рассуждений: Рассмотрим высказывание вида 1. Предполагаем, что высказывание 2. Существуют и другие схемы доказательства от противного. Предполагаем, что из Действительно, Другой метод косвенного доказательства – доказательство по закону контрапозиции, когда вместо истинности Рассмотрим на конкретных задачах применение исчисления высказываний. Пример 3. Записать составное высказывание в виде формулы, употребляя булевы переменные для обозначения простых высказываний. а) если идет дождь, то дует ветер и становится холодно; б) если дует ветер, идет дождь; в) ветер дует тогда и только тогда, когда идет дождь; г) неверно, что ветер дует тогда и только тогда, когда нет дождя. Решение.Введем обозначения: х – «идет дождь», у – «дует ветер», z –«становится холодно». Тогда приведенные высказывания можно записать в виде следующих формул: а) Пример 4. Выяснить, являются ли следующие рассуждения логически верными. Если Джонс не встречал ночью Смита, то Смит был убийцей или Джонс лжет. Если Смит не был убийцей, то Джонс не встречал Смита этой ночью, и убийство имело место после полуночи. Если убийство имело место после полуночи, то Смит был убийцей или Джонс не лжет. Следовательно, Смит был убийцей. Решение. Введем логические переменные: х – «Джонс не встречал ночью Смита», у – «Смит убийца», z – «Джонс лжет», t – «убийство состоялось после полуночи». Прежде чем записать формулу, надо уточнить по условию задачи в каком контексте употребляется союз «или». Когда мы говорим «А или В», мы можем подразумевать две разные ситуации: а)
Следовательно, рассуждения логически правильны. Пример 5. Проверить совместность утверждений. Либо свидетель не был запуган, либо, если Генри покончил жизнь самоубийством, то записка была найдена. Если свидетель был запуган, то Генри не покончил жизнь самоубийством. Если записка была найдена, то Генри покончил жизнь самоубийством. Решение. Введем булевы переменные: х – «свидетель не запуган», у – «Генри покончил самоубийством», z – «записка найдена». Составим конъюнкцию посылок и посмотрим, не является ли она противоречием. Здесь употреблено выражение «либо..., либо...», поэтому первое составное высказывание следует записать в виде это не равно тождественному 0, следовательно, высказывания не являются противоречивыми. Пример 6. Четыре ученицы: Маша (М), Нина (Н), Ольга (О) и Поля (П) участвовали в соревнованиях и заняли первые 4 места. На вопрос, кто какое место занял, было дано 3 ответа: 1) О – второе, П – третье; 2) О – первое, Н – второе; 3) М – второе, П – четвертое. В каждом из этих ответов одна часть верна, а другая нет. Какое место заняла каждая девушка? Решение. Введем булевы переменные: х – «О – второе», у – «П – третье», z – «О – первое», t – «Н – второе», u – «М – второе», n – «П – четвертое». Получим систему уравнений: Отсюда Кроме того, Пример 7.Во время перемены в классе были Аня, Борис, Ваня и Майя. Один из них разбил окно. На вопрос:”Кто разбил окно?”, были даны ответы: Аня: 1) Я не разбивала. 2) Я сидела и читала. 3) Майя знает, кто разбил. Борис: 1) Я этого не делал. 2) С Майей я давно не разговариваю. 3) Это сделал Ваня. Ваня: 1) Я не виновен. 2) Разбила Майя. 3) Борис лжёт, говоря, что разбил я. Майя: 1) Я не разбивала. 2) Это вина Ани. 3) Борис знает, что я не виновна, т.е. мы с ним беседовали во время перемены. Затем каждый признался, что из трёх ответов каждого, два – истинны, а один ложный. Кто разбил окно? Решение. Введем булевы переменные. Высказывания, принадлежащие Ане, обозначим буквами Запишем все формулы, которые являются тавтологиями, получим уравнения:
Выпишем все противоречия:
Чтобы иметь возможность воспользоваться этими противоречиями, возьмём конъюнкцию двух тавтологий:
что тоже будет тавтологией. Получим
Рассмотрим еще одну задачу, для решения которой не требуется аппарат логики высказываний, но тем не менее эта задача относится к логическим задачам. Пример 8. В кафе встретились три друга: скульптор Белов, скрипач Чернов и художник Рыжов. «Замечательно, что один из нас имеет белые, один черные, а один рыжие волосы, но ни у кого цвет волос не совпадает с фамилией», – заметил черноволосый. «Ты прав», – сказал Белов. Какой цвет волос у художника? Решение.Составим таблицу.
![]()
Из условия задачи ясно, что черноволосый не Белов, поэтому первый вариант не подходит. Следовательно, Белов – рыжий, Чернов – белый, Рыжов – черный. Пример 9. На склад, имеющий два помещения для хранения больших количеств двух видов топлива – угля и кокса, каждого отдельно, поступают грузовики, каждый всякий раз с одним из этих видов топлива. К механизму, открывающему шахты, предъявляется требование, чтобы он открыл шахту в помещении для угля, если прибывает грузовик с этим топливом, и шахту в помещении для кокса, если прибывает грузовик с коксом. Для обеспечения хорошей сортировки топлива было предъявлено дополнительное требование: всякий раз в помещение склада впускается только один грузовик и открывается лишь одна шахта. Спрашивается, имеет ли этот механизм также следующее свойство: если не въехал в помещение склада грузовик с углем, то шахта для угля не откроется, а если не въехал грузовик с коксом, то не откроется шахта для кокса. Решение. Введем булевы переменные: высказывание « прибыл грузовик с углем» обозначим через x, « прибыл грузовик с коксом» – y, «открыта шахта для угля» – z, «открыта шахта для кокса» – t. Тогда посылками будут: Так как Пример 10. На предприятии есть три цеха: A, B, C, договорившиеся о порядке утверждения проектов, а именно: 1. Если цех B не участвует в утверждении проекта, то в этом утверждении не участвует и цех A. 2. Если цех B принимает участие в утверждении проекта, то в нем принимают участие цеха A и C. Спрашивается, обязан ли при этих условиях цех C принимать участие в утверждении проекта, когда в нем принимает участие цех A? Решение. Логические переменные: « А участвует в утверждении проекта» обозначим через А, «В участвует в утверждении проекта» – В, «С участвует в утверждении проекта» – С. Посылки:
Пример 11. Перед судом стоят три человека, из которых каждый может быть либо туземцем, либо колониалистом. Судья знает, что туземцы всегда отвечают на вопросы правдиво, между тем как колониалисты всегда лгут. Однако судья не знает, кто из них туземец, а кто колониалист. Он спрашивает первого, но не понимает его ответа. Поэтому он спрашивает сначала второго, а потом третьего о том, что ответил первый. Второй говорит, что первый назвал себя туземцем. Третий говорит, что первый назвал себя колониалистом. Кем были второй и третий подсудимые? Решение. Во-первых, если первый человек туземец, то он назовет себя туземцем, если он колониалист, то тоже назовет себя туземцем. Высказывание «первый сказал, что он туземец» обозначим через x, «второй туземец» – y, «третий туземец» – z, и заметим, что x º 1. Имеем
|