Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Определение неизвестных.

Читайте также:
  1. II 5.3. Определение сухой плотности
  2. II этап. Определение общей потребности в собственных финансовых ресурсах.
  3. III. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА
  4. III.4.4 Определение жанрообразующего начала по наименованию жанра
  5. IV. Определение компенсирующего объёма реализации при изменении анализируемого фактора
  6. IV. ОПРЕДЕЛЕНИЕ КРУГА ИСТОЧНИКОВ, СтруктурЫ и объемА курсовой и выпускной квалификационной (дипломной) работы
  7. IV. Экспериментальное определение параметров схемы замещения трансформаторов.
  8. Nbsp;   7 Определение реакций опор для группы Ассура
  9. V 1: Определение и классификация
  10. А) Определение предела прочности при изгибе

Решая систему уравнений (с) и (а), с учетом, что N1=R1, а N2=R2 имеем:

где N1 и N2 так называемые монтажные усилия.

Пример 23.

Определить усилия в стержнях системы, возникающие в результате поворота двухсторонней винтовой стяжки <<С>> на угол . Жесткость стяжки равна жесткости третьего стержня (рис. 2.50).

Дано: E1=E2=E3=E, F1=2F3=2F2=2F; шаг винтовой нарезки гайки- h; l1=l.

Рис.2.50

 

Решение.

Статическая сторона задачи.

Составляем уравнения равновесия узла А (рис. 2.50, в). Учитывая симметрию относительно оси Y, имеем:

отсюда (а)

Составляем уравнения равновесия узла B (рис. 2.50, с).

отсюда (b)

Тогда степень статической неопределенности подсчитывается так: S=3-2=1

Геометрическая сторона задачи.

При повороте гайки на угол стержень 3, состоящий из двух частей, ввинтится в гайку на величину

Рис. 2.51

 

За счет ввинчивания стержня 3 точки А и В сблизятся на величину , а за счет растяжения этого стержня и стяжки они разойдутся на величину (рис. 2.51). Тогда, на основании схемы деформированной системы, ус­ловие совместности деформаций будет иметь вид:

(с)

3. Физическая сторона задачи.

Согласно закону Гука.

; ; (d)

Здесь l1=l2 по условию, а l2 и l3 можно определить из равенства проекций стержней на горизонтальную и вертикальную оси (рис. 2.50, а):

Подставляя (d)в(с),получим:

(е)

4. Определение неизвестных.

Решая систему, составленную из уравнений (а), (в)и(е), получим:

 


Дата добавления: 2015-04-04; просмотров: 8; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Геометрическая сторона задачи. | Статическая сторона задачи.
lektsii.com - Лекции.Ком - 2014-2019 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты