Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Построение частотно-токового асинхронного электропривода с векторным управлением




Читайте также:
  1. II. Построение карты гидроизогипс
  2. II. Построение карты гидроизогипс
  3. II. Построение продольного профиля по оси трассы
  4. III. Схема замещения и векторная диаграмма асинхронного двигателя
  5. V1: Электромагнитные устройства, электрические машины, основы электропривода и электроснабжения
  6. V4: Электромагнитные устройства, электрические машины, основы электропривода и электроснабжения
  7. АВТОМАТИЗИРОВАННОЕ УПРАВЛЕНИЕ ЭЛЕКТРОПРИВОДА-МИ КОНВЕЙЕРОВ
  8. Автопостроение каналов
  9. Аксиоматическое построение силлогистики.
  10. Аксиоматическое построение теории вероятностей.

Реализация режима тока в автономном инверторе осуществляется, как это было описано выше, введением релейных элементов, на вход которых подается разность управляющего сигнала и сигнала с датчика реального тока двигателя. Функциональная схема электропривода с векторным управлением, реализующая такой режим работы, показана на рис. 3.19. Когда инверторе реализуется режим источника тока, система уравнений (3.2) значительно упрощается , т.к ток статора является задающим сигналом (параметром режима). Кроме того, на систему управления инвертором можно наложить дополнительные функции. Потребуем, чтобы, вырабатывая сигнал скорости вращения системы координат, ось x была сориентирована по потокосцеплению ротора, тогда система уравнений (3.14) запишется в виде:

 

(3.27)

 

 

Рис. 3.17.Функциональная схема АКЗ с токовым управлением .

 

Требуемая скорость вращения координат в этом случае должна быть реализована с выражением

 

(3.28)

 

Структурная схема АКЗ, которая управляется от инвертора с выходной частотой, определенной равенством (3.28), показанным рис.3.18 Следует подчеркнуть, что выходная часть инвертора формируется в зависимости от значения переменных состояний системы. В системе имеются два канала, один определяет поток в машине, другой – момент. Синтез ПИ-регуляторов при построении подчиненной системы в каждом канале осуществим в соответствии с положениями в главе 1. В канале потока выбираем ПИ-регулятор, в канале скорости П-регулятор.

 

 

Рис 3.18. Структурная схема АКЗ с токовым управлением.

 

Коэффициенты передач регуляторы выбираем так, чтобы постоянная времени в канале управления потоком была, по крайней мере, на порядок меньше постоянной времени в канале управления скоростью. В этой модели добавочно учтено на значение магнитопривода машины. Модель электропривода с регуляторами потока и скорости представлена на рис.3.19

 

Рис.3.19. Цифровая виртуальная модель АКЗ с токовым управлением.

Заметим при этом, что математическое описание соответствует описанию по (гладкой) составляющей и не учитывает импульсного характера напряжения на выходе инвертора. Еще на одном моменте следует остановить внимание. В модели рис.3.19 определяется частота на выходе инвертора. Эта частота необходима при использовании моделей, в которых реализуются свойства инвертора.



Рассмотрим модель, в которой функционально реализован (токовый коридор) при использовании инвертора напряжения, а выходная частота инвертора определяется из выражения. Модель системы приведена на рис.3.20.

.

 

Рис.3.20.Цифровая виртуальная модель АКЗ с реализацией токового коридора во вращающейся системе координат.

 

В данной модели реализована вращающаяся система координат, ориентированная по потокосцеплению ротора. Регуляторы в канале потокосцепления и скорости имеют те же параметры, как и в системе рис 3.19 . Модель реализована ШИМ во вращающейся системе координат.

Из рис.3.20 видно, что (токовый коридор) реализован с использованием релейных элементов и отрицательной обратной связи по току. Переходные процессы в электроприводе (в малом ) по скорости и моменту иллюстрирует на рисунке.

При управлении асинхронной машиной от источника тока система электропривода часто строится с использованием регулятора момента в канале скорости. В соответствии с третьим уравнением системы ток по оси у определяется из уравнения:



(3.29)

В модели блоке АКZ реализована модель с (токовым коридором) , рассмотренная выше(рис.3.20). В реальных системах потокосцепление ротора вычисляется в соответствии с (3.30) по выражению:

(3.30)

 

Значение тока определяется на основании реального сигнала с датчика тока.

Полная виртуальная модель частотно-токовой системы с регулятором момента показана на рис. .3.21. эта модель практически повторяет модель из библиотеки Powerdemo.

 

Рис.3.21.Цифровая виртуальная модель АКЗ pwmacdrive

 

. Модель содержит:

  1. виртуальный асинхронный двигатель.
  2. Автономный трехфазный инвертор на IGBT.
  3. Гистерезисный регулятор тока (Current Regulator).
  4. Блоки ABC-XY и XY-ABC осуществляют преобразование подвижной трехфазной системы координат во вращающуюся двухфазную и вращающуюся двухфазную в неподвижную трехфазную в соответствии с принципами, объясненными выше.
  5. Блок определения выходной частоты инвертора (блок Flux Calculation ). Этот блок определяет выходную частоту , т.к только в случае оси координат вращающейся системы будут сориентированы заданным образом.
  6. Блок вычисления потока (блок Flux Calculation).
  7. Блок задания потока (блок Phir*) и регулятор тока по оси x (блок Flux Controller).

Сигналы с выхода регулятора скорости (блок Speed Controller), деленный на вычисленный поток в соответствии с уравнением (3.29), является задающим током по оси y.

 


Дата добавления: 2015-04-16; просмотров: 114; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты