Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Полуэмпирические теории турбулентности.




Современная теория турбулентности не располагает возможностями теоретическим путем получить уравнения для определения напряжений Рейнольдса. Поэтому единственным способом, позволяющим замкнуть систему, является привлечение полуэмпирических соотношений, связывающих эти напряжения с осредненными по времени компонентами скорости , и .

Один из первых исследователей турбулентности, Ж.Бусси­неск, предложил выражать турбулентные напряжения аналогично закону трения Ньютона, т.е.

, (12.4)

где -турбулентная вязкость.

В отличие от физической, турбулентная вязкость характеризует не физические свойства жидкости, а статистические свойства пульсационного движения. Поэтому она не является постоянной величиной, а может изменяться как в пространстве, так и во времени. Важно также отметить, что даже на небольших удалениях от твердых границ турбулентная вязкость существенно превосходит физическую ( ).

В целом для турбулентного потока можно записать

(12.5)

Однако представление Буссинеска не приводит к решению задачи, т.к., к сожалению, отсутствуют прямые методы определения турбулентной вязкости.

Первого заметного успеха в этом направлении добился Л.Прандтль в 1925 году, предложив так называемую теорию пути перемешивания (смешения).

В основе ее лежит аналогия с кинетической теорией газов и предположение о том, что путь смешения зависит от условий течения. В соответствии с гипотезой Прандтля, каждый турбулентный моль (вихрь) жидкости переносит некоторое количество движения, которое сохраняется постоянным на пути перемешивания. Другими словами, длина пути перемешивания в известной мере аналогична длине свободного пробега молекул в кинетической теории газов, и определяет путь, который проходит моль жидкости, прежде чем он перемешается с другими жидкими образованиями и передаст свой импульс.

Допустив далее, что вертикальная и горизонтальная компоненты пульсационной скорости ( и ) являются величинами одного порядка, Прандтль получил формулу для определения турбулентного напряжения в виде

(12.6)

где - длина пути перемешивания.

Угловые скобки вокруг u, символизирующие операцию осреднения, для упрощения записи опущены.

Интересующиеся выводом формулы Прандтля, могут найти его в книгах: Аржаников Н.С., Мальцев В.Н. Аэродинамика. - М.: Изд-во оборонной промышл., 1956. - 483 с., либо Шлихтинг Г. Теория пограничного слоя. - М.: Наука, 1974. - 711 с.

На первый взгляд может показаться, что формула Прандтля не имеет каких-либо существенных преимуществ по сравнению с формулой Буссинеска, и единственным результатом является замена одной не поддающейся вычислению величины другой - . Однако это не так, поскольку величину оценить значительно проще, чем . В частности, не может быть больше размера канала и должна стремиться к нулю вблизи твердой стенки (поперечное дви­жение у стенки невозможно).


Поделиться:

Дата добавления: 2014-11-13; просмотров: 249; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты