![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Физический смысл коэффициента Кориолиса.Как уже упоминалось, коэффициент носит название коэффициента кинетической энергии, корректива скорости, коэффициента Кориолиса. Выясним физический смысл этой величины. Как уже отмечалось выше, второй член в уравнении (9.13) представляет собой кинетическую энергию секундной массы потока, определяемую истинным распределением скоростей в сечении, т.е.
Если бы скорости в сечении были бы распределены равномерно, то
Разделив (9.23) на (9.24), получим:
Следовательно, коэффициент Кориолиса представляет собой отношение кинетической энергии потока, вычисленной по истинному распределению скоростей, к кинетической энергии, определенной по средней скорости. Для уяснения вопроса рассмотрим гипотетический «поток», состоящий из двух струек, скорости которых Истинная кинетическая энергия (сумма кинетических энергий струек) Средняя скорость и Легко убедится, что чем больше неравномерность распределения скоростей, тем больше коэффициент Кориолиса. Так, если Забегая несколько вперед, отметим, что в природе существует два принципиально отличающихся режима течения жидкости: ламинарный и турбулентный. При ламинарном течении в трубах Подведем некоторые итоги. Использование струйной модели потока и сведение его к одномерному путем введения представления о средней скорости позволяют получить одно из основных уравнений гидродинамики - уравнение Бернулли для потока вязкой жидкости. Принципиально, с помощью этого уравнения можно рассчитать движение жидкости в каналах при установившемся течении и условии, что в выбранных сечениях поток слабодеформированный либо параллельно-струйный. Однако, для полного решения задачи необходимо уметь определять потери напора (
|