Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


В СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ СТЕРЖНЕВЫХ СИСТЕМАХ




 

ОБЩИЕ ПРИНЦИПЫ ОПРЕДЕЛЕНИЯ ОБОБЩЕННЫХ

ВНУТРЕННИХ СИЛ В СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ

СТЕРЖНЕВЫХ СИСТЕМАХ

 

Для определения обобщенных внутренних сил во всех статически определимых системах можно применить способ сечений. Суть данного способа состоит в следующем:

а) в интересующем месте конструкции проводится сквозное сечение, перпендикулярное осям стержней;

б) составляются уравнения равновесия для части конструкции, расположенной с какой-либо стороны от проведенного сечения с учетом обобщенных внутренних сил в этом сечении (последние необходимо прикладывать в положительных направлениях согласно правилам, изложенным в параграфе 0.2).

в) из уравнений равновесия определяются обобщенные внутренние силы в сечении.

Пример: Определить обобщенные внутренние силы в сечении “k” плоской статически определимой рамы (рис. 1.1).

 

 

 

Для определения обобщенных внутренних сил в сечении “k” достаточно найти реакции только левой опоры, составляя для этого два уравнения равновесия:

Из этих уравнений получаем

Составляем три уравнения равновесия для части рамы, расположенной слева от сечения “k” (рис. 1.2):

Значения определяются через : Из этих уравнений получаем выражения для определения в сечении “k”:

Вычисления дают: .

Анализ полученных выше выражений позволяет сформулировать правила знаков для прямого получения от действия внешних сил (без составления уравнений равновесия отсеченной части конструкции): а) если сила растягивает стержень в заданном сечении, то она дает в нем ; б) если сила стремится вращать часть конструкции вокруг сечения по ходу часовой стрелки, то она дает в этом сечении ; в) если сила растягивает стержень в сечении с нижней стороны (для горизонтальных стержней) или с правой стороны (для вертикальных стержней), то она дает в нем .

В дальнейшем при составлении выражений для в заданном сечении будут везде использоваться приведенные выше правила. В заключении параграфа следует заметить, при расчете конструкции значения определяются не в каком-либо одном сечении, а по длине всех стержней конструкции в виде соответствующих графиков, называемых эпюрами . Необходимость построения таких эпюр обусловлена не только расчетом конструкций на прочность, но и, как будет показано ниже, расчетом ее на жесткость.

РАСЧЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ БАЛОК

 

В поперечных сечениях балок при действии нагрузки перпендикулярной их оси возникают поперечная сила и изгибающий момент . Распределение и по длине балки изображается в виде соответствующих эпюр. Правильность построения эпюр и можно проверять с помощью основных дифференциальных зависимостей при изгибе. Для получения этих зависимостей рассмотрим произвольную балку (рис. 1.3а) и составим уравнения равновесия ее бесконечно малого элемента (рис. 1.3б).

 

 

Из этих уравнений получаем дифференциальные зависимости:

Согласно данным зависимостям на участках с , а меняется линейно. Причем, если , то линейно возрастает (рис. 1.4). Положительные ординаты эпюры откладываются с нижней стороны участка. Если на участке , то линейно убывает (при направлении вниз), а эпюра - квадратная парабола. Способ построения такой параболы показан на рис. 1.5. Причем, если есть точка, в которой , то эпюра в этой точке имеет экстремум.

 

Рассмотрим пример построения эпюр и в статически определимой шарнирной балке (рис. 1.6а). Предварительно определим реакции опор и силы взаимодействия между частями балки (рис. 1.6б), составляя для каждой части по два уравнения равновесия.

 

 

Для части BCD:

Для части AB:

Определяем и на каждом участке балки (рис. 1.6б). Направление движения по каждому участку определяется расположением букв в обозначении участка: первая буква - начало участка, вторая - конец участка. Знаки и определяются по правилам, изложенным в параграфе 1.1.

Участок AB:

Участок BC:

Участок DC:

По полученным результатам строим эпюры и (рис. 1.6в, 1.6г). Парабола эпюры на участке BC строится способом, показанным на рис. 1.5. В точке E участка ВС , а эпюра соответственно имеет экстремум.

 

РАСЧЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ РАМ

 

В поперечных сечениях стержней рам в общем случае возникают три обобщенные внутренние силы: . Расчет рамы начинается с определения реакций опор. Если рама состоит из нескольких частей, то определяются также силы взаимодействия между этими частями.

Рассмотрим пример построения эпюр и в статически определимой раме, составленной из двух частей (рис. 1.7). При расположении опор А и B на одном уровне сначала целесообразно определить вертикальные реакции этих опор из двух уравнений равновесия, составленных для всей рамы:

 

Для определения реакции и сил в шарнире C расчленим раму на две части (рис. 1.8) и рассмотрим равновесие правой части:

 

 

Реакция определяется из уравнения равновесия для всей системы:

Определяем и на каждом участке рамы (рис. 1.8). При записи участков первая буква означает снова начало участка, вторая - конец участка. Знаки и определяются по правилам, изложенным в параграфе 1.1.

Участок АЕ:

Участок СЕ:

Участок СD:

.

Участок BD:

.

По полученным результатам строим эпюры N, Q, M (рис. 1.9). Правильность построения эпюр проверяется с помощью зависимостей а также проверкой равновесия узлов. Внутренние силы N, Q, M в сечениях вокруг узлов удобнее прикладывать в действительных направлениях (рис. 1.10).

 

 

РАСЧЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ ФЕРМ

 

В поперечных сечениях стержней ферм при действии нагрузки, приложенной в их узлах, возникают только продольные силы . Для определения этих сил используются два основных способа.

 

а) Способ вырезания узлов.

 

Суть данного способа заключается в вырезании узлов фермы и составлении уравнений равновесия этих узлов. Узлы фермы должны вырезаться в такой последовательности, чтобы в каждом из них действовало не более двух неизвестных сил для плоских ферм и не более трех неизвестных сил для пространственных ферм. Предполагается, что все стержни фермы растянуты. Поэтому силы в стержнях направляются от узлов фермы. Перед вырезанием узлов необходимо определить реакции опор из уравнений равновесия, составленных для всей фермы.

 

Пример (рис. 1.11).

Дано: .

Определить: .

 

 

Решение.

Реакции опор определяются из уравнений равновесия, составленных для всей фермы:

Далее вырезаем последовательно узлы и составляем уравнения равновесия сил, действующих в этих узлах.

Узел А.

 

Узел B.

 

Узел С.

 

Узел F.

 

 

Узел D.

 

 

Общее число уравнений равновесия вместе с тремя уравнениями, составленными для всей фермы, должно быть равно , где - число узлов фермы. Поэтому при вырезании всегда остаются незадействованными три уравнения равновесия (в данном случае одно уравнение для узла D и два уравнения для узла E), которые можно использовать в качестве проверочных уравнений.

 

б) Способ сквозных сечений.

 

Суть данного способа заключается в составлении уравнений равновесия для части фермы, расположенной с какой-либо стороны от сквозного сечения, проведенного через интересующие стержни фермы. Сечение должно разрезать не более трех стержней.

Определим данным способом силы в стержнях 4, 5, 6 прежней фермы (рис. 1.11). Для этого проведем через данные стержни сквозное сечение I-I и рассмотрим равновесие части фермы, расположенной с левой стороны от проведенного сечения (рис. 1.12). Каждую из сил можно определить независимо от двух других сил:

Полученные значения совпадают с теми, что были найдены ранее способом вырезания узлов.

 

 

РАСЧЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ АРОК

 

В поперечных сечениях арок возникают три внутренние силы: . Рассмотрим процедуру определения этих сил на примере трехшарнирой арки (рис. 1.13). Исходные данные: .

Определяем реакции опор:

 

 

Внутренние силы на участке АС ( ) определяем способом сечений, составляя три уравнения равновесия для части, расположенной с левой стороны от проведенного сечения (рис. 1.14):

Из этих уравнений получаем

На остальных участках выражения для можно записать, используя соответствующие выражения на предыдущем участке. При этом следует рассматривать всегда часть арки, расположенную слева от текущего сечения, а начало отсчета брать в точке А.

Участок CD:

Участок DB:

Функции определяются по уравнению оси арки:

Результаты расчета приведены в таблице 1.1 и на рис. 1.15.

 

Таблица 1.1.

- м м - - кН кН кН м
0,0 0,0 0,782 0,623 -87,900 20,027 0,0
2,5 3,061 0,758 0,653 -68,113 7,113 52,286
5,0 5,657 0,664 0,748 -49,957 -2,586 60,279
7,5 7,391 0,433 0,901 -37,912 -11,297 39,413
10,0 8,0 0,0 1,0 -39,063 -18,750 0,0
12,5 7,391 -0,433 0,901 -43,329 0,031 -23,087
15,0 5,657 -0,664 0,748 -41,655/-58,260 11,931/-6,758 -2,221
17,5 3,061 -0,758 0,653 -58,642 1,045 -10,214
20,0 0,0 -0,782 0,623 -58,557 3,323 0,0

Поделиться:

Дата добавления: 2014-11-13; просмотров: 206; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты