Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Системы восстановления несущего колебания




Читайте также:
  1. C2 Покажите на трех примерах наличие многопартийной политической системы в современной России.
  2. II. Системы, развитие которых можно представить с помощью Универсальной Схемы Эволюции
  3. III. Требования к организации системы обращения с медицинскими отходами
  4. Oсoбеннoсти и прoблемы функциoнирoвaния вaлютнoй системы Республики Белaрусь
  5. А). Системы разомкнутые, замкнутые и комбинированные.
  6. А. Оппозиция логичных и нелогичных действий как исходноеотношение социальной системы. Теория действия Парето и теория действия Вебера
  7. Авиационно-транспортной системы
  8. Автоколебания
  9. АВТОМАТИЗАЦИЯ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ
  10. Автоматизированные системы обработки данных

Система восстановления несущего колебания (ВН) демодуляторов полосовых сигналов цифровой модуляции предназначена для формирования опорного гармонического колебания, фаза которого совпадает с фазой несущей, на основе которой сформирован демодулируемый сигнал.

Уже в 30-е годы прошлого столетия стало ясно, что сигналы ФМ-2 имеют наивысшую помехоустойчивость. Для применения этих сигналов в системах передачи необходимо было решить задачу восстановления несущего (опорного) колебания в демодуляторе, которое необходимое для работы синхронного детектора. В те годы была предложена схема восстановления несущего колебания с умножением частоты на 2 (рис. 13.1).

 
 

 


В случае ФМ-2 . Коэффициенты ai заданы сигнальным созвездием (рис. 11.1). Канальные символы:

(13.1)

Много десятилетий использовались «слабо» фильтрованные импульсы A(t), которые были близки по форме к П-импульсу на интервале длительностью Т

(13.2)

После умножения частоты на 2, как сигнал s1(t), так и сигнал s0(t) дают . Узкополосный фильтр имеет среднюю частоту полосы пропускания 2f0. Он предназначен для ослабления помех. Делитель частоты на 2 может выдать одно из двух возможных опорных колебаний:

- случай 1:

- случай 2:

Оба колебания возможны, так как результат зависит от того, которые начальные условия сложатся в схеме делителя. Говорят, что опорное колебание имеет неопределенность фазы порядка 180°.

В случае 1 реализуется алгоритм оптимальной демодуляции сигнала
ФМ-2. В случае 2 на выходе перемножителя, а затем и согласованного фильтра, и дискретизатора будут напряжения, противоположные тем, которые имеют место в случае 1. Схема решения будет выносить инверсные решения: вместо 1 выдает 0 и наоборот. Такое явление получило название инверсная (обратная) робота демодулятора. Оказалось, что и в процессе работы демодулятора могут происходить случайные скачкообразные переходы от колебания uоп1(t) к колебанию uоп2(t) и наоборот.

В демодуляторе сигнала ФМ-4 необходимо использовать умножитель частоты на 4, фильтр со средней частотой полосы пропускания 4f0 и делитель частоты на 4. После делителя частоты возникает одно из опорных колебаний, которые отличаются по фазе с шагом 90°. Имеет место неопределенность фазы опорного колебания порядка 90°.



Устранить проявление неопределенности фазы опорного колебания в демодуляторе удается при использовании разностного (относительного) кодирования. Такие методы передачи получили название фазоразностной (относительной фазовой) модуляции.

Выше рассмотрена система ВН с возведением в степень. Однако она хорошо работает, когда амплитуда импульса A(t) близка к прямоугольной форме. Ныне используются импульсы Найквиста – импульсы с существенно сглаженной формой A(t). При такой форме импульса система ВН с возведением в степень работает плохо.

Опорное колебание необходимое для работы синхронного детектора (рис. 13.2). Пусть на вход детектора поступает сигнал ФМ-2. Канальный символ описывается

(13.3)

Если фаза колебания от генератора

(13.4)

отличается от фазы несущей входного сигнала на величину Dj, то сигнал на выходе синхронного детектора получает множитель cosDj:

. (13.5)

Поскольку максимальное значение косинуса равняется единице и достигается лишь в случае Dj = 0, наличие разности фаз приводит к уменьшению уровня сигнала на выходе детектора. Если же Dj = p/2, то сигнал на выходе детектора вообще отсутствует: .



 
 

 


Ныне система ВН – это система фазовой автоматической подстройки частоты (ФАПЧ) (рис. 13.3) со специальным детектором ошибки фазы, которая способна работать в условиях отсутствия несущей в спектре сигнала. Здесь ГУН – генератор, управляемый напряжением. При появлении напряжения ошибки фазы e, этим напряжением подстраивается частота и фаза колебания, производимого ГУНом, так, чтобы уменьшить величину ошибки фазы.

Рассмотрим построение детектора ошибки фазы в случае сигнала ФМ-2. Схема детектора содержит еще один дополнительный синхронный детектор, опорным колебанием которого является . Напомним, что работу синхронного детектора можно рассматривать как вычисление проекции s(t) на uоп(t). Два синхронных детекторы отличаются опорными колебаниями, сдвинутыми по фазе на 90°. Поэтому получаемые напряжения с выходов синхронных детекторов являются квадратурными составляющими детектируемого сигнала.

На рис. 13.4 показано сигнальное созвездие демодулируемого сигнала ФМ‑2 и вычисленные квадратурные составляющие в момент отсчета при условии, что демодулируется канальный символ с амплитудой а: I – синфазная составляющая, Q – квадратурная составляющая. На рис. 13.4, а ошибка фазы опорного колебания Dj = 0; при этом синхронные детекторы вычисляют I = а, Q = 0. На рис. 13.4, б ошибка фазы опорного колебания Dj > 0; при этом синхронные детекторы вычисляют I = а×cosDj, Q < 0. На рис. 13.4, в ошибка фазы опорного колебания Dj < 0; при этом синхронные детекторы вычисляют I = а×cosDj, Q > 0.

Видим, что знак значения Q соответствует ошибке фазы: а именно, если Q < 0, то Dj > 0 и необходимо уменьшать частоту и фазу ГУН, если же Q > 0, то Dj < 0 и необходимо увеличивать частоту и фазу ГУН. Таким образом, значение Q можно принять в качестве ошибки фазы e. Но ситуация со знаком Q противоположная при демодуляции канального символа с амплитудой –а.



Костас предложил в качестве ошибки фазы опорного колебания в демодуляторе сигнала ФМ-2 использовать

. (13.6)

На рис. 13.5 показанная схема демодулятора сигнала ФМ-2 с раскрытой схемой восстановления несущего колебания.

       
 
 
   

 


Для построения системы ВН демодулятора сигнала ФМ-4 используется детектор ошибки фазы, вычисляемой по алгоритму Костаса

. (13.7)

Здесь признаком ошибки фазы опорного колебания есть неравенство модулей квадратурных составляющих I и Q. Такой же алгоритм вычисления ошибки фазы используется и в демодуляторах сигналов КАМ-М.

Контрольные вопросы

1. Поясните работу схемы восстановления несущего колебания с умножением частоты.

2. Поясните, что такое неопределенность фазы опорного колебания.

3. Поясните, что такое детектор ошибки Костаса.


Дата добавления: 2014-11-13; просмотров: 35; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.032 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты