КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Фазоразностная модуляцияУстранить инверсную работу демодулятора ФМ-2 позволяет переход к разностному методу передачи, при котором передаваемые двоичные символы (биты) отображаются не в начальные фазы канальных символов (как при Принцип формирования и демодуляции сигналов ФРМ-2 отображен на рис. 14.1. Модулятор сигнала ФРМ-2 состоит из разностного кодера (РК) и модулятора сигнала ФМ-2, а демодулятор сигнала ФРМ-2 – из демодулятора сигнала ФМ-2 и разностного декодера (РД). Разностный кодер модема ФРМ-2 работает по правилу (14.1) где bk – бит 1 или 0 на входе кодера на k-ом тактовом интервале; – символ 1 или 0 на выходе кодера на k-ом тактовом интервале; Å – знак сложения по модулю 2. Разностный декодер модема ФРМ-2 работает по правилу (14.2) где – символ 1 или 0 на входе разностного декодера на k-ом тактовом интервале; – бит 1 или 0 на выходе разностного декодера на k-ом тактовом интервале.
Начальная фаза восстановленного несущего колебания в демодуляторе может совпадать с начальной фазой демодулируемого сигнала ФМ-2 или отличаться от нее на угол p. В общем виде можно записать, что фаза опорного колебания приобретает сдвиг p×p (p = 0 или 1 – значения, которые описывают сдвиг фазы). Считая, что помех в канале связи нет, символы на выходе демодулятора ФМ-2 будут определяться соотношением (14.3) для всех k. Подставив выражение (14.3) в формулу (14.1), легко убедиться, что бит не зависит от р. Пример кодирования и декодирования произвольной последовательности бит приведен в табл. 14.1. Таблица иллюстрирует кодирование, начиная с k = 1. Поскольку при кодировании на k-ом тактовом интервале принимает участие предыдущий кодированный символ, то во второй строке произвольно принято = 0. Строка 3 повторяет строка 2 – демодуляция без обратной работы. Результат декодирования приведен в строке 4. Строка 5 содержит инверсию строки 2 – демодуляция с обратной работой. После декодирования восстановленный сигнал (строка 6) совпадает с исходным сигналом (строка 1). Таким образом, передача с разностным кодированием устраняет обратную работу демодулятора ФМ-2. В случае М-ой фазовой модуляции по той же причине, что и в случае ФМ-2, имеет место неопределенность фазы порядка 2p/М. Аналогично ФРМ-2 информация отображается в разность фаз соседних канальных символов и имеет место ФРМ-М. При М > 2 разностный кодер и декодер работают из М-ми символами. Переход от бит цифрового сигнала к М-ым канальным символам происходит в кодере модуляционного кода. При передаче цифровых сигналов сигналами ФМ-4 используются 4 канальных символа , (14.4) где qi – четверичные символы, принимающие значения 0, 1, 2, 3; – начальные фазы канальных символов, принимающие значения p/4, 3p/4, 5p/4, 7p/4. Начальная фаза восстановленного в демодуляторе опорного колебания однозначно определенной быть не может – она определяется с точностью до p/2. Это обусловлено симметрией сигнального созвездия ФМ-4: при демодуляции неизвестно, какой из четырех сигналов считать “нулевым”. Чтобы устранить влияние неопределенности фазы опорного колебания при демодуляции сигнала ФМ-4, переходят к модуляции ФРМ-4. Принцип формирования и демодуляции сигналов ФРМ-4 отображен на рис. 14.2. Модулятор сигнала ФРМ-4 состоит из кодера модуляционного кода, разностного кодера и модулятора сигнала ФМ-4, а демодулятор сигнала ФРМ-4 – из демодулятора сигнала ФМ-4, разностного декодера и декодера модуляционного кода. На этом рисунке и ниже по тексту нижний индекс k определяет номер тактового интервала, а сдвиг q может принимать значения 0, 1, 2 и 3.
Разностный кодер при ФРМ-4 реализует правило кодирования четверичных символов: (14.5) где Å – сложение по модулю 4 (остаток от деления на 4 арифметической суммы слагаемых). Разностный декодер реализует правило декодирования четверичных символов: y , (14.6) где y – вычитание по модулю 4 (остаток от деления разности на 4). Начальная фаза опорного колебания в демодуляторе может совпадать с начальной фазой демодулируемого сигнала ФМ-4 или отличаться от нее на угол p×p/2 (p = 0, 1, 2 или 3 – значение, описывающее сдвиг фазы). Считая, что помехи в канале связи нет, символы на выходе демодулятора ФМ-4 будут определяться соотношением (14.7) для всех k. Таким образом, из-за неопределенности фазы когерентного колебания в демодуляторе сигнала ФМ-4 все символа получают приращение p. Если подставить выражение (14.7) в формулу (14.6), то легко убедиться, что символ не зависит от р. При ФРМ-4 благодаря вычитанию в декодере значения p неопределенность фазы снимается. Поскольку для исключения неопределенности фазы значение определяется как разность двух соседних символов, то при кодировании значение формируется как сумма предыдущего значения и передаваемого символа qk. Правила сложения по модулю 4 приведены в табл. 14.2, а правила вычитания по модулю 4 – в табл. 14.3. При передаче цифрового сигнала сигналом ФМ-4 переход от пар бит b1b2 к четверичным символам q на каждом тактовом интервале осуществляется согласно модуляционному коду Грея, пример которого приведен в табл. 14.4. Поскольку при демодуляции сигнала ФМ-4 наиболее вероятные ошибки – это переходы в ближайшие сигналы, то при использовании кода Грея такие переходы приводят к ошибке лишь в одном бите, и, тем самым, минимизируется вероятность ошибки бита.
В табл. 14.5 приведен пример кодирования и декодирования при передаче цифрового сигнала методом ФРМ-4. Принято, что значение p = 3, а = 1. Переход от пар бит к четверичным символам осуществляется согласно табл. 14.4. Из данных табл. 14.5 вытекает, что принятые биты совпадают с переданными. Предположим, что из-за действия помехи демодулятор ФМ-2 выносит ошибочное решение на k-м тактовом интервале. Каждый символ, поступающий на вход разностного декодера, при декодировании используется дважды – на k-м и на (k + 1)-м тактовых интервалах. Поэтому, если решение демодулятора на (k – 1)-м и на (k + 1)-м тактовых интервалах верные, то на выходе разностного декодера появятся два ошибочных бита. Итак, разностный декодер размножает ошибки. Вероятность ошибки бита при передаче методами ФРМ-2 и ФРМ-4 в области малых значений вероятности ошибки (р << 1) запишется . (14.8) На завершение рассмотрения ФРМ-М отметим, что в русскоязычной литературе такой способ передачи называют также относительной фазовой модуляцией ОФМ-М). Таблица 14.5 – Пример разностного кодирования и декодирование четверичных символов
Контрольные вопросы 1. Объясните принцип формирования и демодуляции сигнала ФРМ-2. 2. Объясните принцип формирования и демодуляции сигнала ФРМ-4. 3. Как определяется помехоустойчивость систем передачи методами ФРМ-2 и ФРМ-4?
|