Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Закон повного струму. Використання закону повного струму для розрахунку магнетного поля




Читайте также:
  1. Ex lege XII tabularum aes alienum hereditarium... pro portionibus... ipso iure divisum (C. 2. 3.26). - По законам XII таблиц наследственные долги делятся автоматически на доли.
  2. I закон термодинамики
  3. I.4.2) Законы.
  4. II закон Ньютона.
  5. II закон термодинамики. Теорема Карно-Клаузиуса
  6. II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  7. II.3. Закон как категория публичного права
  8. II.3.2) Классификация законов.
  9. II.3.3) Сила и пространство действия законов.
  10. III закон Ньютона.

Скористаємось рівнянням Максвелла для циркуляції вектора напруженості магнетного поля

 

, (13.1.1)

 

де j – густина струму провідності вільних електричних зарядів; - струм зміщення, не пов’язаний з наявністю вільних електричних зарядів; Н – напруженість магнетного поля.

У провідниках, в яких є вільні електричні заряди, струм зміщення відсутній (він може існувати лише у діелектричному середовищі), тобто

 

.

 

У цьому випадку рівняння (13.1.1) набуває вигляду:

 

. (13.1.2)

 

Рівняння (13.1.2) називається законом повного струму. Для написання закону повного струму через індукцію магнетного поля слід замінити Н у формулі (13.1.2) на

.

 

Закон повного струму у цьому випадку матиме вигляд

 

. (13.1.3)

 

Рівняння (13.1.3) формулюється так:

 

Циркуляція вектора індукції магнетного поля уздовж довільного замкнутого контуру дорівнює алгебраїчній сумі всіх струмів, охоплених цим контуром і помноженій на mm0.

 

Як видно з рівняння (13.1.3)

 

.

 

Таке магнітне поле називається вихровим. Силові лінії магнетного поля є завжди замкнутими.

 

Скористаємось законом повного струму (13.1.3) для розрахунку магнетного поля соленоїда і тороїда.

 

а) знайдемо циркуляцію вектора В вздовж замкнутого контуру ABCD (рис.13.1). У нашому випадку витки в соленоїді щільно прилягають один до одного. Соленоїд має довжину, значно більшу за діаметр.

 

 

Рис.13.1

 

.

 

На ділянках DA і BC ; Тут а

На ділянці CD ; Цю ділянку можна вибрати досить далеко від соленоїда, де магнетне поле відсутнє.

Тому з урахуванням цих зауважень маємо:

. (13.1.4)

де N – число витків, які вкладаються в інтервалі довжини соленоїда АВ; І – струм, який протікає в цих витках.

Але , де l = AB. Закон повного струму в цьому випадку перепишеться:

. (13.1.5)

 

Звідки індукція магнетного поля на осі довгого соленоїда буде дорівнювати:

 

. (13.1.6)

 

Вираз (13.1.6) показує, що на осі довгого соленоїда зі струмом І індукція магнетного поля дорівнює:

 

В = mm0nI.

 

б) магнітне поле на осі тороїда.



 

Розглянемо тороїд, який має вигляд довгого соленоїда, кінець і початок якого збігаються (рис.13.2).

 

Рис.13.2

 

Витки в такій котушці щільно прилягають один до одного, а радіус осьової лінії R. Знайдемо циркуляцію вектора вздовж осьової лінії тороїда

 

,

де N - число витків у тороїді; І - струм у витках.

 

Але - довжина кола вздовж осьової лінії, тому

 

,

де - число витків на одиницю довжини осьової лінії тороїда.

Таким чином, індукція магнетного поля на осі тороїда визначається такою ж формулою, що і для довгого соленоїда, тобто

 

В = mm0nI . (13.1.7)

 

13.2. Магнетний потік. Теорема Гаусса для магнетного поля

Потоком магнетної індукції або магнетним потоком називають скалярну величину, яка дорівнює:

 

, (13.2.1)

 

де - вектор індукції магнетного поля у напрямку нормалі до площадки dS (рис.13.3)

 

 

Рис.13.3

 

Повний магнетний потік через поверхню S знаходять шляхом інтегрування.

Розмірність магнетного потоку визначається так:

 

[Ф] = [В]×[S] = Тл×м2 = Вб.

 

Магнетному потоку в 1 Вб відповідає 108 силових ліній індукції магнітного поля крізь площадку в 1 м2.



 

У випадку замкнутої поверхні слід відрізняти між собою такі особливості:

- силові лінії, які входять у поверхню, мають від’ємний потік, тому в цьому випадку

 

- силові лінії, які виходять з поверхні мають

 

- у загальному випадку

 

. (13.2.2)

Вираз (13.2.2) є теоремою Гаусса для магнетного поля. Суть цієї теореми полягає в тому, що силові лінії магнетного поля не пов’язані з магнетними зарядами. Магнетних зарядів у природі не існує. Описане явище показане на рис. 13.4.

 

 

Рис.13.4

. (13.2.3)

 

13.3. Робота переміщення провідника із струмом і контуру із струмом у магнетному полі

Знайдемо роботу, яку слід виконати для переміщення провідника із струмом І у магнетному полі, як це показано на рис. 13.5

 

 

Рис.13.5

 

Провідник, що має довжину l і струм І виготовлений у вигляді коточка і має можливість переміщуватись. На рухому частину провідника з сторони магнетного поля діє сила Ампера, напрям якої визначається правилом лівої руки.

Для переміщення такого коточка вздовж направляючих дротів слід прикладати силу F, яка має бути рівною силі Ампера. Робота в цьому випадку буде дорівнювати:

 

. (13.3.1)

 

де FA=IBl – величина сили Ампера, яка діє на рухомий коточок, тому:

 

dA = -Ibldx = -IbdS = -IdF (13.3.2)

 

Знак мінус показує, що робота виконується проти сили Ампера.

 

Якщо роботу виконує сила Ампера, то

 

dA= IdF (13.3.3)

 

де dА – позитивна робота, виконана силою Ампера.



Після інтегрування одержуємо роботу сили по переміщенню провідника із струмом у магнетному полі.

 

A = -IDF,

 

або

A =IDF. (13.3.4)

 

У випадку контуру із струмом, який рухається у магнетному полі, слід враховувати як позитивну роботу, так і негативну роботу переміщення двох частин цього контуру (рис.13.6)

 

 

Рис.13.6

 

При русі частини контуру АС (зліва) робота виконується позитивна. Тому в цьому випадку

dA1 = I(dF1 + dF0), (13.3.5)

 

де dФ1 – потік, який визначається площею лівої частини контуру АС (заштрихована площа),

0 - потік, який визначається площею самого контуру з струмом.

При переміщенні правої сторони цього контуру робота буде дорівнювати

 

dA2 = -I(dF2 + dF0), (13.3.6)

 

де dФ2 – потік, який утвориться переміщенням правої частини контуру; dФ0 – потік за рахунок площі самого контуру.

Ця площа перекривається площею правої сторони контуру. Робота dА2 – від’ємна.

У загальному випадку робота переміщення контуру з струмом у магнетному полі буде дорівнювати

 

dA = I(dF1 - dF2)= IdF. (13.3.7)

 

Після інтегрування одержимо

 

А=ІDФ. (13.3.8)

 

Висновок. Робота переміщення провідника із струмом і контуру із струмом визначається однаковою формулою.

 

13.4. Енергія магнетного поля

 

Розглянемо замкнуте коло, в якому є резистор R, котушка L і джерело струму e (рис.13.7)

Рис.13.7

 

Скористаємось другим правилом Кірхгофа для замкнутого контуру, показаного на рис.13.7.

У цьому випадку

, (13.4.1)

 

або

, (13.4.2)

де - електрорушійна сила самоіндукції, діє лише в момент замикання або розмикання кола.

З рівняння (13.4.2) визначимо електрорушійну силу джерела

 

. (13.4.3)

Зведемо цей вираз до спільного знаменника

 

edt = Irdt + LdI . (13.4.4)

 

Помножимо вираз (13.4.4) на струм І, одержимо

 

Iedt = I2rdt + LIdI , (13.4.5)

 

де I2rdt - джоулевe тепло; Iedt - робота сторонніх сил джерела струму; LIdI - енергія магнетного поля, локалізована в котушці зі струмом.

 

Тому

dWм= LIdI . (13.4.6)

 

Інтегруємо цей вираз у межах зміни енергії магнетного поля від 0 до Wм, а струму від 0 до І, одержимо

 

,

або

. (13.4.7)

 

Вираз (13.4.7) визначає енергію магнетного поля котушки зі струмом.

Для довгого соленоїда L=mm0n2V. Підставимо це значення L у (13.4.7), одержимо

. (13.4.8)

де m2m02n2І22 – квадрат індукції магнетного поля соленоїда.

З урахуванням цього зауваження одержуємо:

. (13.4.9)

 

При діленні енергії магнетного поля на об’єм одержимо об’ємну густину енергії магнетного поля, локалізованого в котушці

 

,

 

або

. (13.4.10)

 

 

ЛЕКЦІЯ 14

 

МАГНЕТНЕ ПОЛЕ В РЕЧОВИНІ

14.1. Струми і механізм намагнечування. Намагнечуваність


Дата добавления: 2014-12-03; просмотров: 304; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.037 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты