КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Примеры определения средних ошибок средних и относительных величин
Каждая средняя арифметическая или относительная величина, полученная на выборочной совокупности, должна быть представлена со своей средней ошибкой. Это дает возможность рассчитать доверительные границы средних и относительных величин, а также определить достоверность разности сравниваемых показателей (результатов исследования).
6.2 Определение доверительных границ генеральной совокупности. Определяя для средней арифметической (или относительной) величины два крайних значения: минимально возможное и максимально возможное, находят пределы, в которых может быть искомая величина генерального параметра. Эти пределы называют доверительными границами. Доверительные границы — это то максимальное и минимальное значение, в пределах которого, при заданной степени вероятности безошибочного прогноза, может колебаться искомая средняя величина генерального параметра. Доверительные границы средней арифметической в генеральной совокупности определяют по формуле:
Мген = Мвыб ± tmМ
Доверительные границы относительной величины в генеральной совокупности определяют по следующей формуле: Рген = Рвыб ± tmР где Мген и Рген — значения средней и относительной величин, полученных для генеральной совокупности; Мвы6 и Рвы6 — значения средней и относительной величин, полученных для выборочной совокупности; тМ и тР — ошибки репрезентативности выборочных величин; t — доверительный критерий (критерий точности, который устанавливают при планировании исследования; tm — доверительный интервал; tm=∆, где ∆ предельная ошибка показателя, полученного при выборочном исследовании. Размеры предельной ошибки (∆) зависят от коэффициента t, который избирает сам исследователь, исходя из необходимости получить результат с определенной степенью точности. Величина критерия t связана определенными отношениями с вероятностью безошибочного прогноза — р и численностью наблюдений в выборочной совокупности. Зависимость доверительного критерия t от степени вероятности безошибочного прогноза (при n>30)
Для большинства медико-биологических и социальных исследований достоверными считаются доверительные границы, установленные с вероятностью безошибочного прогноза р = 95% и более. Чтобы найти критерий t при числе наблюдений n<30, необходимо воспользоваться специальной таблицей, в которой слева показано число наблюдений без единицы (n-1), а сверху (р) — степень вероятности безошибочного прогноза.
Значение критерия t для трех степеней вероятности (по Н А. Плохинскому)
При определении доверительных границ сначала надо решить вопрос о том, с какой степенью вероятности безошибочного прогноза необходимо представить доверительные границы средней или относительной величины. Избрав определенную степень вероятности, соответственно этому находят величину доверительного критерия t при данном числе наблюдений. Таким образом, доверительный критерий t устанавливается заранее, при планировании исследования. Любой параметр (средняя величина или относительная величина) может оцениваться с учетом доверительных границ, полученных при расчете. Для ознакомления с методикой определения доверительных границ Мвыб и Рвы6 рекомендуется записать исходные данные и провести расчеты в определенной логической последовательности: Пример 1. Определить доверительные границы среднего уровня пепсина у больных гипертиреозом с 95% вероятностью безошибочного прогноза (р = 95%). Условие задачи: n=49 Мвы6 = 1 г% mм = ±0,05 г% р = 95% (следовательно при n = 49 t = 2). Определяем доверительные границы средней величины в генеральной совокупности. Формула Мген = Мвыб ± tmM Решение : Мген = 1 г% ± 2 х 0,05 г% Мген не более 1 г%+0,1 г%= 1,1 г%, Мген не менее 1 г%—0,1 г% =0,9 г%. Вывод: Установлено с вероятностью безошибочного прогноза (р = 95%>, что средний уровень пепсина в генеральной совокупности у больных с гипертиреозом не превышает 1,1 г% и не ниже 0,9 г%. Пример 2. Определить доверительные границы показателя частоты дистрофии пародонта у больных с абсцессом легкого с вероятностью безошибочного прогноза р = 95%. Условие задачи: n=110 Рвы6 =40% mp = ±4,7% р =95% (следовательно, при n=110 t=2). Определяем доверительные границы относительного показателя в генеральной совокупности. Формула: Рген = Рвыб ± tmp, Решение: Pген = 49% ±2 х 4,7% Рген не более 40% + 9,4 = 49,4% Рген не менее 40% -9,4 = 30,6% Вывод: Установлено с 95% вероятностью безошибочного прогноза (р = 95%), что дистрофические изменения пародонта в генеральной совокупности наблюдаются у больных с абсцессом легкого не чаще, чем в 49,4%, и не реже, чем в 30,6% случаев. Как видно, доверительные границы зависят от размера доверительного интервала (tm=∆). Анализ доверительных интервалов указывает, что при заданных степенях вероятности (р) и n >30 t имеет неизменную величину и при этом доверительный интервал зависит от величины ошибки репрезентативности (mM или mР). С уменьшением величины ошибки суживаются доверительные границы средних и относительных величин, полученных на выборочной совокупности, т. е. уточняются результаты исследования, которые приближаются к соответствующим величинам генеральной совокупности. Если ошибка большая, то получают для выборочной величины большие доверительные границы, которые могут противоречить логической оценке искомой величины в генеральной совокупности. Например, при определенном режиме питания и тренировок спортсменов средняя годовая прибавка массы тела у 80 спортсменов составила Мвы6=1 кг; mM= ±0,8 кг. При степени вероятности р = 95,0% и t = 2 Мген = 1 кг ± 2 х 0,8 кг. Следовательно: Мген не более + 2,6 кг, Мген не менее - 0,6 кг. Эти противоречивые данные означают, что при указанном режиме спортсмены могут дать большую среднюю прибавку массы тела (до +2,6 кг), но могут и убавить массу тела в среднем на 600 г. Таким образом, остается по-прежнему невыясненным вопрос о степени влияния данного режима спортсменов на массу их тела. В подобном случае надо искать резервы сокращения размаха доверительных границ в размере величины ошибки репрезентативности. Прежде всего надо проанализировать уровень разнообразия признака по среднему квадратическому отклонению (s) с позиций однородности группы. Необходимо также иметь в виду, что большое влияние на величину средней ошибки, а следовательно, и на доверительные границы оказывает численность наблюдений. Доверительные границы Мвыб и Рвыб зависят не только от средних ошибок этих величин (mм или mР), но и от избранной исследователем степени вероятности безошибочного прогноза (р). При большой степени вероятности размах доверительных границ увеличивается.
|