КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ВЕРОЯТНОСТЯХ.
Относительная частота события А - это отношение числа испытаний, в которых событие фактически появилось (благоприятствующих А) к общему числу проведенных испытаний: . Если классическая вероятность вычисляется до опыта, то относительная частота - после опыта. Конечно, при увеличении количества испытаний в серии на 1 W(A) меняется - хотя бы потому, что на единицу изменяется знаменатель дроби. Тем не менее, с увеличением n величина W(A) приближается к некоторому числу, которое называют статистической вероятностью события А. Заметим, что когда в задаче говорится, что «вероятность поражения стрелком мишени равна 0,7», то речь идет о вероятности, вычисленной статистически. Бывают задачи, когда множества всех элементарных исходов и благоприятствующих исходов невозможно пересчитать. В этих задачах иногда удается выразить вероятность события как отношение либо длин, либо площадей, либо объемов. Например, если считать, что попадания в круглую мишень происходят равномерно по площади всей мишени, а диаметр центра мишени в 5 раз меньше диаметра самой мишени, то вероятность попадания в центр (при условии попадания в мишень) равна отношению площадей центра мишени и всей мишени: В этом случае количество вариантов, благоприятствующих А, бесконечно, но и общее число вариантов исхода испытания бесконечно, т.е. формулы классической или статистической вероятности неприемлемы. Вероятность, определяемую как отношение длин, площадей, объемов, называют геометрической вероятностью.
§6. ПРОСТЕЙШИЕ СВОЙСТВА ВЕРОЯТНОСТЕЙ.
Для классического, статистического и геометрического определений вероятности выполняются следующие аксиомы: I. Р(А) ³ 0 для любого наблюдаемого события А ; II. Р(W ) = 1 ; III. Если события А и В несовместны (А · В = Æ), то Р(А + В) = Р(А) + Р(В).
Из аксиом можно вывести следующие свойства: 1. Р(Æ) = 0 , откуда следует, что если А и В несовместны (А · В = Æ ), то Р(А · В) = 0. 2. Р( ) = 1 - Р(А). 3. Р(А) £ 1. 4. Если А Ì В (А влечет за собой В, т.е. все исходы, содержащиеся в А, содержатся и в В), то Р(А) £ Р(В) . 5. Если А = B (т.е. А Ì В и В Ì А), то Р(А) = Р(В) . 6. Р(А + В) = Р(А) + Р(В) - Р(А · В), формула сложения вероятностей. В частности, если А и В несовместны (А · В = Æ), то получим аксиому III.
|