![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Оценка статистической значимости коэффициентов регрессии.Заключается в проверке основной гипотезы Н0 о значимости отличия коэффициентов b0 и b1 от нуля. С этой целью используется критерий Стьюдента. Вычисляются , и сравниваются с tкрит . Результатом сравнения является вывод о значимости коэффициентов b0 и b1 . 2. Интервальные оценки коэффициентов регрессии. Так как объем выборки ограничен, то b0 и b1 – случайные величины, поэтому желательно найти доверительные интервалы для истинных значений
которая имеет t – распределение Стьюдента с
с надежностью р = 1- 3. Проверка значимости уравнения регрессии в целом. Позволяет установить, соответствует ли математическая модель экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных для описания зависимой переменной. Проверка значимости уравнения регрессии производится на основе дисперсионного анализа. Мерой общего качества уравнения регрессии является коэффициент детерминации R2 R2 = 1 - Выражение (1.11) вытекает из соотношения
где
Из соотношений (1.11) и (1.12) следует, что коэффициент детерминации R2 есть не что иное, как
R2 =
Таким образом, коэффициент детерминации можно вычислить по формулам (1.11) или по (1.13). Основная цель использования уравнения регрессии – прогноз значений зависимой переменной. Здесь речь идет о возможных значениях Yр при определенных значениях объясняющей переменной Хр. Так как задача решается в условиях неопределенности то прогноз удобнее всего давать на основе интервальных оценок, построенных с заданной надежностью Причем здесь возможно два подхода: 1) предсказание среднего значения, т.е. M (Y/ Х=xр); 2) предсказание индивидуальных значений Y/ Х=xр . Интервальный прогноз для среднего значения вычисляется следующим образом:
где Интервальный прогноз для индивидуального значения вычисляется по формуле
|