КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Целью регрессионного анализа в случае парной регрессии является предсказание значения результативного признака Y при определенном значении факторного признака XВ случае множественной корреляции исследуется зависимость отклика системы от нескольких факторов Изучение множественной корреляции начинается с анализа матрицы парных коэффициентов корреляции, что позволяет произвести отбор факторов, включаемых в модель множественной зависимости
При построении многофакторных моделей должно соблюдаться требование наименьшей коррелируемости включенных в модель признаков–факторов, т.е. отсутствия мультиколлинеарности. . При невыполнении хотя бы одного неравенства следует исключить факторный признак с менее тесной связью с Y. Следует учитывать, что число факторов, включаемых в модель, должно быть в 5-6 раз меньше, чем число единиц, входящих в совокупность. Совокупный коэффициент корреляции определяется следующим образом: - определитель матрицы парных коэффициентов корреляции, - определитель матрицы, получаемый из матрицы парных коэффициентов корреляции путем вычеркивания 1 строки и 1 столбца, - коэффициент детерминации. Он показывает, в какой мере вариация результативного признака обусловлена влиянием признаков-факторов, включенных в уравнение множественной регрессии. R не может быть меньше, чем любой из образующих его парных коэффициентов корреляции. Чем ближе R к 1, тем меньше роль неучтенных в модели факторов и тем более оснований считать, что параметры регрессионной модели верно отражают степень эффективности включенных в нее факторов. Для сравнения роли различных факторов в формировании моделируемого показателя определяют α-коэффициенты (коэффициенты эластичности) и β-коэффициенты. показывает, на сколько процентов в среднем изменяется результативный признак Y c изменением фактора Xi на 1%. bi – коэффициент регрессии при i-ом факторе. β-коэффициент показывает, на какую часть среднего квадратического отклонения изменится результативный признак при изменении соответствующего фактора Хi на величину его среднего квадратического отклонения: Рассмотрим простейшую модель линейной регрессии с 2-мя факторами X и Z
Y=b0+b1x+b2z
|