Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Множественная корреляция




Читайте также:
  1. Автокорреляция
  2. Автокорреляция в рядах динамики
  3. Ковариация и корреляция
  4. Корреляция
  5. Корреляция и регрессия
  6. КОРРЕЛЯЦИЯ КАТЕГОРИЗИРОВАННЫХ (НОМИНАЛЬНЫХ) ПЕРЕМЕННЫХ
  7. Линейная корреляция
  8. Множественная (многофакторная) регрессия
  9. Множественная линейная регрессия

 

Оценки тесноты связи (корреляции) могут играть двоякую роль. Это самостоятельные характеристики, дающие представление и о взаимодействии изучаемых факторов, и об аппроксимации фактических данных аналитической функцией. Поэтому расчет показателей множественной корреляции предполагает оценку уравнений регрессии.

При оценке линейной множественной связи рассчитывают коэффициент множественной корреляции. По смыслу он отражает тесноту связи между вариацией зависимой переменной и вариациями всех включенных в анализ независимых переменных. Обычно сначала строится линейная множественная регрессия, а затем оценивается сам коэффициент.

Наиболее общие формулы для его определения имеют следующий вид:

; , (161)

 

 

где σ2 – общая дисперсия фактических данных результативного признака (дисперсия Y);

σ2ост. – остаточная дисперсия, характеризующая вариацию Y за счет факторов, не включенных в уравнение регрессии.

 

Коэффициент множественной корреляции изменяется от 0 до 1, чем ближе R к 1, тем более сильная связь между Y и множеством Х. Эта же оценка R используется и как мера точности аппроксимации фактических данных в уравнении. Если R незначительно по величине (как правило, R0,3), то можно утверждать, что либо не все важнейшие факторы взаимосвязи учтены, либо выбрана неподходящая форма уравнения. В этом случае следует пересмотреть список переменных модели, а возможно, и сам ее вид.

Для нелинейной множественной связи рассчитывают индекс корреляции. Форма и процедура его вычисления аналогичны указанным выше, только взаимодействие факторов аппроксимируется нелинейной функцией. Он также изменяется в пределах от 0 до 1. На практике, как правило, используется одно название – коэффициент множественной корреляции.

Квадрат R равен так называемому коэффициенту детерминации (D, или R2). Он показывает, какая часть вариации зависимого признака объясняется включенным в модель факторами.

 


Дата добавления: 2014-12-23; просмотров: 10; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.014 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты