КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Искусственные нейронные сетиОписанные в п. 6.1 формальные нейроны можно объединять таким образом, что выходные сигналы одних нейронов являются входными для других. Полученное множество связанных между собой нейронов называют искусственными нейронными сетями (artificial neural networks, ANN) или, коротко, нейронными сетями.
Рис. 6.2. Примеры активационных функций: а) пороговая; б) линейная; в) лог-сигмоидная; г) гиперболический тангенс
Пример нейронной сети с тремя входами и одним выходом представлен на рис. 6.3, нейроны обозначены кружками, стрелками показано направление распространения сигналов, веса межнейронных связей указаны рядом с соответствующими связями.
Рис. 6.3. Пример нейронной сети
Различают следующие три общих типа нейронов, в зависимости от их положения в нейронной сети: · входные нейроны (input nodes), на которые подаются входные для всей сети сигналы. Такие нейроны имеют, как правило, один вход с единичным весом, смещение отсутствует, а значение выхода нейрона равно входному сигналу (нейроны с индексами 0-2 на рис. 6.3); · выходные нейроны (output nodes), выходные значения которых представляют результирующие выходные сигналы нейронной сети (нейрон с индексом 3 на рис. 6.3); · скрытые нейроны (hidden nodes), не имеющие прямых связей с входными сигналами, при этом значения выходных сигналов скрытых нейронов не являются выходными сигналами ИНС (нейрон с индексом 4 на рис. 6.3). Отметим, что структуру ИНС можно рассматривать как ориентированный граф, в котором узлы соответствуют нейронам, а ребра – межнейронным связям. По структуре межнейронных связей различают два класса ИНС: 1. ИНС прямого распространения (feed-forward ANNs), в которых сигнал распространяется только от входных нейронов к выходным. Орграф, соответствующий таким ИНС, не имеет циклов и петель. Примером ИНС прямого распространения является ИНС на рис. 6.3 и 6.4а. 2. Рекуррентные ИНС (recurrent ANNs) – ИНС с обратными связями. В таких ИНС сигналы могут передаваться между любыми нейронами, вне зависимости от их расположения в ИНС. Орграф, соответствующий структуре рекуррентных ИНС, может иметь петли и циклы (рис. 6.4б).
Рис. 6.4. Примеры структур нейронных сетей: а) ИНС прямого распространения: б) рекуррентная ИНС
Среди различных структур ИНС наиболее известны многослойные ИНС (multi-layered ANNs) (рис. 6.5). Рассмотрим такие ИНС более подробно. В многослойных сетях нейроны объединяются в слои таким образом, что нейроны одного слоя имеют одинаковые входные сигналы. Число нейронов в слое может быть произвольным и зависит в большей степени от решаемой задачи, чем от количества нейронов в других слоях. Внешние (входные) сигналы подаются на нейроны входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные сигналы нейронов последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети может быть один или несколько скрытых слоев. Выходные сигналы нейронов слоя (q) являются входными сигналами следующего слоя (q+1). Одной из основных характеристик многослойных нейронных сетей является число слоев. В дальнейшем для описания структуры многослойных ИНС будем использовать количество присутствующих в ней скрытых слоев. По структуре многослойные ИНС могут представлять как ИНС прямого распространения (рис. 6.4а и 6.5), так и рекуррентные (рис. 6.4б). Отметим также, что возможны многослойные сети, в которых существуют прямые связи между нейронами из несмежных слоев. Такие связи называют перекрестными. В данном пособии будут рассматриваться только многослойные нейронные сети без перекрестных и обратных связей.
Рис. 6.5. Многослойная ИНС прямого распространения
Рис. 6.6. Многослойная ИНС с перекрестной связью
Использование ИНС обладает следующими преимуществами: 1. Возможность решения трудноформализуемых задач, для которых трудно найти точный алгоритм решения (распознавание речи, рукописного текста). Отметим, что успешность применения ИНС существенно зависит от постановки задачи и исходных данных. 2. Массовый параллелизм в обработке информации. Данное преимущество позволяет реализовать нейросетевые алгоритмы и методы на параллельных вычислительных структурах, что особенно актуально в настоящее время в связи с распространением распределенных вычислений и массовым внедрением многоядерных центральных и графических процессоров для ПК, а также в связи с унификацией разнородных вычислений (научных, физических, графических и др.) на персональных компьютерах. 3. ИНС представляют единую концепцию для решения разнообразных задач, таких как задачи классификации, аппроксимации, моделирования, распознавания образов, принятия решений, обработки информации, кластеризации и др. 4. Возможность нестандартного решения известных задач, что расширяет и обогащает арсенал существующих средств и подходов, поскольку позволяет посмотреть на проблему и ее решение под «нестандартным» углом.
|