КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Независимые испытания. Формулы Бернулли.В настоящем разделе мы изучим основные закономерности, относящиеся к одной из важнейших схем теории вероятностей — схеме последовательных независимых испытаний. В это понятие мы вкладываем следующий смысл. Под испытанием(опытом) мы станем понимать осуществление определенного комплекса условий, в результате которого может произойти то или иное элементарное событие пространства U элементарных событий. Математической моделью последовательности п испытаний является новое пространство элементарных событий, состоящее из точек , где - произвольная точка пространства U, отвечающая испытанию с номером i. Пусть испытание состоит в подбрасывании игральной кости. Пространство элементарных состояний состоит из 6 точек. Пространство ,соответствующее трем испытаниям, состоит из 216 точек(n=63). Пусть под испытанием понимается проверка длительности безотказной работы полупроводникового прибора под определенным напряжением. Пространство элементарных событий состоит из множества точек полупрямой . Пространство состоит из множества точек , координаты которых принимают неотрицательные значения, равные длительностям безотказной работы соответственно приборов с номерами 1,2,...,n. Предположим, что для s-го испытания пространство U разбито на k несовместимых случайных событий , т. е. предположим, что Событие назовем i-м исходом при s-м испытании. Обозначим вероятность i-го исхода при s-м испытании через = Р ( ). Bernylli Обозначим через событие, состоящее из всех тех точек пространства , для которых . Если в пространстве Un имеет место равенство при любых - то испытания называются независимыми. В дальнейшем мы ограничимся случаем, когда вероятности событий не зависят от номера испытания s; обозначим в этом случае ; в силу несовместимости и единственной возможности исходов очевидно, имеем . Эта схема впервые была рассмотрена Я. Бернулли в важнейшем частном случае ; по этой причине указанный случай носит название схемы Бернулли. В схеме Бернулли обычно полагают . Из определения независимых испытаний вытекает следующий результат: Теорема 1. Если данные п испытаний независимы, то любые т из них также независимы. Для простоты ограничимся случаем , поскольку переход к общему случаю не встречает затруднений. Действительно, имеет место очевидное равенство из которого следует, что По определению это означает, что первые п—1 испытаний независимы. Простейшая задача, относящаяся к схеме независимых испытаний, состоит в определении вероятности того, что при п испытаниях событие А наступит т раз, а остальные п—т раз наступит противоположное событие , обозначим это событие В. Тогда
Здесь Аi – событие состоящее в том, что событие А произойдет в i- ом испытании. Событие В представляет собой сумму несовместных событий, тогда согласно теореме сложения вероятностей получаем
Вероятность каждого слагаемого в данной сумме по теореме умножения для независимых событий равна . По теореме сложения вероятностей искомая вероятность равна сумме только что вычисленных вероятностей для всех различных способов т появлений события А и n—т не появлений среди п испытаний. Число таких способов, как известно из теории сочетаний, равно ; следовательно, искомая вероятность равна
Так как все возможные несовместимые между собой исходы п испытаний состоят в появлении события 0 раз, 1 раз, 2 раза, ..., n раз, то ясно, что
Легко заметить, что вероятность равна коэффициенту при в разложении бинома по степеням x. Исследуем далее как ведет себя вероятность при различных значениях m. Найдем m, при котором вероятность является наибольшей. Для этого определим отношение Из полученного соотношения следует: 1) Пусть - в данном случае вероятность возрастет с ростом m. 2) Пусть - тогда предыдущая и последующая вероятности выравниваются. 3) Пусть - в данном случае вероятность уменьшается с ростом m. Таким образом, с увеличением m сначала возрастает, затем достигает максимума и при дальнейшем росте m убывает. При этом, если является целым числом, то максимальное значение вероятность принимает для двух значений m, а именно и . Если же не является целым числом, то максимальное значение вероятности достигается при , равном максимальному целому числу, большему из и . Число называют наивероятнейшим значением и обозначают через . Пример. Вероятность попадания при одном броске в кольцо равна 0,4. Баскетболист совершил 10 бросков. Каково наивероятнейшее значение числа попаданий в кольцо?
|