Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Распределение произведения.




Читайте также:
  1. II. РАСПРЕДЕЛЕНИЕ ДОХОДА
  2. III. РАСПРЕДЕЛЕНИЕ ЧАСОВ КУРСА ПО ТЕМАМ И ВИДАМ РАБОТ
  3. Б. Распределение.
  4. Барометрическая формула. Распределение Больцмана
  5. Барометрическая формула. Распределение Больцмана. Распределение Максвелла - Больцмана.
  6. Билет 25. Производство, передача и распределение электрической энергии.
  7. Биномиальное распределение.
  8. Биноминальное распределение
  9. В) системы с полным и с частичным распределением затрат.
  10. Вебер М. Избранные произведения. М., 1990.

Пусть , где и — скалярные случайные величины с совместной плотностью распределения . Найдем распределение Y.

(6.4.1)

На рис. событие показано штриховкой. Теперь очевидно, что

(6.4.2)
(6.4.3)

Распределение квадрата случайной величины.

Пусть ; X — непрерыная случайная величина с плотностью . Найдем . Если , то и . В том случае, когда получаем:

(6.5.1)
(6.5.2)

В частном случае, когда , имеем:

(6.5.3)

Если при этом , , то

(6.5.4)

Распределение частного.

Пусть ; X — непрерывная случайная величина с плотностью . Найдем .

(6.6.1)

На рис. 6.6.1 видно, что событие — изображают заштрихованные области. Поэтому

(6.6.2)
(6.6.3)

Если ; ; независимы, то легко получить:

(6.6.4)

Распределение (6.6.4) носит имя Коши. Оказывается, это распределение не имеет математического ожидания и дисперсии.


Дата добавления: 2014-12-23; просмотров: 22; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.019 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты