КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Решение логических задач с помощью кругов Эйлера.
Сло
Фигура Рея-Остеррица,
Основы логики и логические основы компьютера.
Тема: Логика. Основные понятия логики
Логика – как наука. Познание истины – одна из важнейших потребностей человека. Каждый человек и человечество в целом стремятся к истине, добру и красоте. Все люди нуждаются в истинном знании, получении новой информации о мире, в котором они живут. Для получения информации о каком-либо предмете обычно используют два пути. Первый путь - изучение того, что сделано до нас, для этого пользуются справочниками, энциклопедиями, обращаются к специалистам. Второй путь - самостоятельный поиск решения, наблюдения, эксперименты и как результат - умозаключение, т.е. новое знание, полученное на основе известного. Нетрудно сделать вывод, что именно вторым путем получена вся собранная до нас информация. Именно второй путь познания является логической категорией, именно этим путем шли древние философы, более 2300 лет назад пытаясь понять законы мышления. Действительно, каждый человек, не всегда подозревая о том, пользуется логикой, принимая какое-либо решение на основе известных или предполагаемых событий или фактов, истинных или ложных. В Древней Греции, Древней Индии, Древнем Риме законы и формы правильного мышления изучались в рамках ораторского искусства. Применение логических приемов рассуждения позволяло ораторам более убедительно доносить до аудитории их точку зрения, склонять людей на свою сторону. Мыслить логично – значит мыслить точно и последовательно, не допускать противоречий в своих рассуждениях, уметь вскрывать логические ошибки. Представьте себе, что вас спросили: «Почему днем бывает светло?». А вы ответили: «Потому что днем свет делает день светлым». Вы нарушили правила логики и, по сути, ничего не объяснили. Логика– одна из древнейших наук. Ее название происходит от древнегреческого многозначного слова «logos» - мысль, речь, слово, понятие, разум. Древние философы пытались найти ответ на вопрос, как и по каким законам мыслит человек, какими путями мышления можно прийти к истине в рассуждениях о событиях и явлениях окружающего мира. Логика — наука, изучающая законы и формы мышления; учение о способах рассуждений и доказательств. По дошедшим до нас рукописям Аристотеля считают, что именно он явился основоположником логики как науки. В логике Аристотеля сформированы логические категории «понятие», «суждение», «умозаключение», законы логики, метод дедукции, понятие гипотезы. Логика Аристотеля - это так называемая классическая, формальная логика. Это название происходит от основного принципа логики как науки, который гласит, что правильность рассуждения определяется только его логической формой, или структурой, и не зависит от конкретного содержания входящих в него суждений. Итак, основной принцип формальной логики предполагает, что: ¨ каждое рассуждение, выраженное на некотором языке, имеет содержание и форму; ¨ содержание и форма различаются и могут быть разделены; ¨ содержание не оказывает влияния на правильность рассуждения; ¨ для оценки правильности рассуждения существенна лишь его форма; ¨ форму рассуждения необходимо выделить в «чистом» виде и затем на основе только формы решать вопрос о правильности рассуждения.
Понятие – как одна из форм человеческого мышление. Итак, предметом исследования науки логики является человеческое мышление. Мышление всегда осуществляется в каких-то формах. В логике выделяют следующие формы мышления: понятие, суждение и умозаключение. Понятие выделяет существенные признаки объекта, которые отличают его от других объектов. Объекты, объединенные понятием, образуют некоторое множество. Понятие — форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов. Понятия в языке выражаются словами. Примеры понятий: 1) апельсин; 2) трапеция; 3) река Нил; 4) ураганный ветер; 5) студент медицинского института. Существенными называются такие признаки, каждый из которых, взятый отдельно, необходим, а все вместе достаточны, чтобы с их помощью отличить данный предмет (явление) от всех остальных и сделать обобщение, объединив однородные предметы в множество. Например, признаками понятия апельсин являются: круглый, оранжевый, упругий, сладкий, ароматный. Можно ли по этим признакам отличить апельсин от не апельсина? По ним легко отличить апельсин от яблока, но нельзя отличить от мандарина. Поэтому для точной идентификации апельсина необходимо ввести дополнительные признаки.
Понятие имеет две стороны: содержаниеи объем. Содержание понятия составляет совокупность существенных признаков объекта. Чтобы раскрыть содержание понятия, следует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов. Например, содержанием понятия хороший ученик включает в себя признаки: познавать новое и иметь интерес к учебе, быть исполнительным, быть обязательным, быть воспитанным, помогать отстающим. Любой ли отличник может в соответствии с этими признаками называться хорошим учеником? Заметим, что даже если ученик плохо учится, но проявляет интерес к учебе, всегда выполняет домашние задания, воспитан и помогает по мере сил тем, кто слабее его, то его можно отнести по данной совокупности признаков к хорошим ученикам. Всех тех учеников, которые обладают выделенными признаками, можно объединить в множество. Объем понятия — множество предметов, каждому из которых принадлежат признаки, составляющие содержание понятия. Выделяют понятия общие и единичные. Например, объем понятия река – это множество, состоящее из рек, носящих иена Обь, Иртыш, Енисей, Волга и др. Наглядная геометрическая иллюстрация объемов понятий и отношений между ними была предложена математиком, физиком и астрономом Леонардом Эйлером и носит название кругов Эйлера. Отношения понятий по объему: Если имеются два каких-либо понятий можно представить в виде круга, а отношение между этими объемами – в виде пары кругов. • тождество или совпадение объемов, означающее, что объем одного понятия равен объему другого понятия;
Х – Ю. Гагарин, У – первый космонавт. • пересечение или частичное совпадение объемов;
Х – школьник, У– спортсмен.
• подчинение или включение объемов: объем одного из понятий полностью включен в объем другого;
Х – лев, У – хищник. • соподчинение объемов — случай, когда объемы двух понятий, исключающие друг друга, входят в объем третьего.
А – береза, В – ель, С – дерево. • исключение объемов — случай, в котором нет ни одного признака, который бы находился в двух объемах;
А – рыбы, В – птицы.
Формальная логика не утратила своего значения со временем и используется в гуманитарных науках, таких, как криминалистика, философия, юриспруденция, психология.
Решение логических задач с помощью кругов Эйлера. 1. Из 52 школьников 23 собирают значки, 35 собирают марки, а 16 – и значки, и марки. Остальные не увлекаются коллекционированием. Сколько школьников не увлекается коллекционированием?
Ответ: 10 человек. 2. На рисунке круг А изображает всех сотрудников института, говорящих по-английски, круг Н – говорящих по-немецки, круг Ф – говорящих по-французски. Сколько сотрудников института говорит: а) на всех трёх языках; б) по-английски и по-немецки; в) по-французски. Сколько всего сотрудников в институте? Сколько из них не говорит по-французски?
3. На пикник поехали 92 человека. Бутерброды с колбасой взяли 50 человек, с сыром – 60 человек, с ветчиной – 40 человек, с сыром и колбасой – 30 человек, с колбасой и ветчиной – 15 человек, с сыром и ветчиной – 25 человек, 5 человек взяли с собой все три вида бутербродов, а несколько человек вместо бутербродов взяли пирожки. Сколько человек взяли с собой пирожки?
4. Из 54 человек 24- занимается баскетболом, 25 – волейболом, 26 – футболом. Секцию по баскетболу и волейболу посещает 9 человек, по волейболу и футболу – 7 человек, по футболу и баскетболу – 8 человек. Сколько человек посещает все три секции? 1 способ.
2 способ. Пусть все три секции посещает х человек. Тогда секцию по футболу и баскетболу посещают (8-х) человек, баскетболу и волейболу – (9-х) человек, футболу и волейболу – (7-х) человек. Только баскетболом занимается (7+х) человек, только волейболом – (9+х) человек и только футболом занимается (11+х) человек. Составляем уравнение:
Домашнее задание.Решить задачи с помощью кругов Эйлера. 1. В классе 15 мальчиков. Из них 10 человек занимается волейболом и 9 баскетболом. Сколько мальчиков занимается и тем и другим?
|