Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Правило Рунге практической оценки погрешности.




Оценка погрешности зависит от длины элементарного отрезка , и при достаточно малом справедливо приближенное равенство: , где приближенное значение интеграла. Если уменьшить шаг в два раза, то получим: .

Вычитая одно из другого, получим: , или .

Это приближенное равенство дает оценку погрешности. Вычисление этой оценки называется правилом Рунге. Правило Рунге – это эмпирический способ оценки погрешности, основанный на сравнении результатов вычислений, проводимых с разными шагами . Для формулы Симпсона , и оценка принимает вид: . Используя правило Рунге, можно построить процедуру приближенного вычисления интеграла с заданной точностью . Нужно, начав вычисления с некоторого значения шага , последовательно уменьшать это значения в два раза, каждый раз вычисляя приближенное значение . Вычисления прекращаются тогда, когда результаты двух последующих вычислений будут различаться меньше, чем на .

Пример.Вычислить .

Решение.Возьмём , тогда .

    10)0,54)
0,125 0,984625    
0,250   0,9411761)  
0,375 0,876712    
0,5   0,82)  
0,625 0,7191    
0,750   0,643)  
0,875 0,566389    
     
    3,45955 1,62818 1,5

.

.

.

Следовательно, значение интеграла можно счесть .


Поделиться:

Дата добавления: 2015-01-05; просмотров: 167; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты