Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Апроксимация данных.




Читайте также:
  1. E) схема данных.
  2. Базы данных. Системы управления базами данных.
  3. Ввод и редактирование данных.
  4. Взаимоотношения сети данных, ООД и службы передачи данных. Классификация сетей.
  5. Возможности группировки данных. Использование агрегатных функций
  6. Входной язык системы MathCAD.Типы данных.
  7. ЗАПРОСЫ К БАЗЕ ДАННЫХ.
  8. Иерархическая модель представления данных. Ее достоинства и недостатки.
  9. Инкапсуляция автоматически подразумевает защиту данных.

Аппроксима́ция, или приближе́ние — научный метод, состоящий в замене одних объектов другими, в каком-то смысле близкими к исходным, но более простыми.

Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов (например, таких, характеристики которых легко вычисляются или свойства которых уже известны). В теории чисел изучаются диофантовы приближения, в частности, приближения иррациональных чисел рациональными. В геометрии рассматриваются аппроксимации кривых ломаными. Некоторые разделы математики в сущности целиком посвящены аппроксимации, например, теория приближения функций, численные методы анализа.

В переносном смысле употребляется в философии как метод приближения, указание на приблизительный, неокончательный характер. Например, в таком смысле термин «аппроксимация» активно употреблялся Сёреном Кьеркегором (1813—1855) в «Заключительном ненаучном послесловии…»

Остаточный член — разность между заданной функцией и функцией ее аппроксимирующей. Тем самым оценка остаточного члена является оценкой точности рассматриваемой аппроксимации. Этот термин применяется, например, в формуле ряда Тейлора.

. Для приближённого вычисления интеграла используется формула прямоугольников или формула трапеций, или более сложная квадратурная формула. Фактически при этом происходит приближение подынтегральной функции ступенчатой функцией или вписанной ломаной, интеграл от которой считается мгновенно.

. Для вычисления значений сложных функций часто используется вычисление значения отрезка ряда, аппроксимирующего функцию.

. Для обработки экспериментальных или натурных данных. Тут следует рассматривать два случая: 1) аппроксимирующая функция ограничена диапазоном заданных точек и служит в качестве только интерполирующей зависимости; 2) аппроксимирующая функция выступает в роли физического закона и с ее помощью допускается экстраполировать переменные. Приведем пример. Пусть на основе натурных наблюдений получены следующие пары чисел и


Дата добавления: 2015-01-19; просмотров: 29; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты