Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Метод Гауса.




Читайте также:
  1. Amp; Методичні вказівки
  2. Amp; Методичні вказівки
  3. Amp; Методичні вказівки
  4. Amp; Методичні вказівки
  5. Amp; Методичні вказівки
  6. Amp; Методичні вказівки
  7. Amp; Методичні вказівки
  8. B. Искусственная вентиляция легких. Методики проведения искусственной вентиляции легких
  9. Cтруктуры внешней памяти, методы организации индексов
  10. FDDI. Архитектура сети, метод доступа, стек протоколов.

Описанные выше методы используют фиксированные точки отрезка (концы и середину) и имеют низкий порядок точности (0 — методы правых и левых прямоугольников, 1 — методы средних прямоугольников и трапеций, 3 — метод парабол (Симпсона)). Если мы можем выбирать точки, в которых мы вычисляем значения функции , то можно при том же количестве вычислений подынтегральной функции получить методы более высокого порядка точности. Так для двух (как в методе трапеций) вычислений значений подынтегральной функции, можно получить метод уже не второго, а третьего порядка точности:

.

В общем случае, используя точек, по формуле можно получить метод с порядком точности , т.е. получаются точные значения для полиномов степени не выше .

Значения узлов метода Гаусса по точкам являются корнями полинома Лежандра степени . Значения весов вычисляются по формуле , где - первая производная полинома Лежандра.

Для узлы и веса имеют следующие значения : веса : .

(Полином определен на отрезке ).

Наиболее известен метод Гаусса по пяти точкам.


Дата добавления: 2015-01-19; просмотров: 29; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты