Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Многочлен Лагранжа.

Читайте также:
  1. Вопрос 3. Под каким номером указан вид частного решения уравнения , где - многочлены четвертой степени?
  2. Многочлен Лагранжа
  3. Многочлен Ньютона с конечными разностями
  4. Многочлен Ньютона.
  5. Покажем единственность полинома Лагранжа.
  6. Практическая работа № 1. Многочленная, кусочно-многочленная, сплайновая и обратная интерполяция
  7. Тема 1. Многочленная, кусочно-многочленная, сплайновая и обратная интерполяция.
  8. Характеристический многочлен

Интерполяцио́нный многочле́н Лагра́нжа — многочлен минимальной степени, принимающий данные значения в данном наборе точек. Для n+1 пар чисел (x0, y0), (x1, y1),…, (xn, yn), где все xj различны, существует единственный многочлен L(x) степени не более n, для которого L(xj) = yj.

В простейшем случае (n=1) — это линейный многочлен, график которого — прямая, проходящая через две заданные точки.

Лагранж предложил способ вычисления таких многочленов:

где базисные полиномы определяются по формуле:

li(x) обладают следующими свойствами:

  • являются многочленами степени n
  • li(xi) = 1
  • li(xj) = 0 при j ≠ i

Отсюда следует, что L(x), как линейная комбинация li(x), может иметь степень не больше n, и L(xi) = yi.

Используя полином Лагранжа можно показать, что

если , то первые два по старшинству коэффициента многочлена

Указанная выше сумма задаёт биективное отображение между и

Полиномы Лагранжа используются для интерполяции, а также для численного интегрирования.

Пусть для функции f(x) известны значения yi=f(xi) в некоторых точках. Тогда мы можем интерполировать эту функцию как

В частности,

Значения интегралов от li не зависят от f(x), и их можно вычислить заранее, зная последовательность xj.


Дата добавления: 2015-01-19; просмотров: 17; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Апроксимация данных. | Многочлен Ньютона.
lektsii.com - Лекции.Ком - 2014-2019 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты