Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Объема кредитных вложений (наш факторный признак - х);




Показатель вычисляется по формуле

, (5.2.5.)

где –групповые средние,

– общая средняя,

–число единиц в j-ой группе,

k – число групп.

Для расчета межгрупповой дисперсии строится вспомогательная таблица 5.2.2. При этом используются групповые средние значения из табл. 5.2.3. (графа 7).

Таблица 5.2.3.

Вспомогательная таблица для расчета межгрупповой дисперсии

Группы банков по размеру кредитных вложений, млн. руб. Число банков, Прибыль банков всего, млн. руб. Средняя прибыль банков по группе, млн. Руб.
гр.5=гр.4-228,333 гр6= гр5*гр5 гр7= гр6*гр2
375,00 - 459,00 171,000 171,0-228,333= -57,333 3287,073 3287,107*4= 13148,292
459,00 - 543,00 200,400 -27,933 780,252 3901,260
543,00 - 627,00 228,000 -0,333 0,111 1,221
627,00 - 711,00 253,143 24,810 615,536 4308,752
711,00 - 795,00 294,667 66,333 4400,200 13200,600
итого 228,333     34560,125
               

 

Расчет межгрупповой дисперсии по формуле (5.2.5.):

 

Исходя из правила сложений дисперсий вычисляются показатели, оценивающие силу и тесноту связи между факторным и результативным признаком

Эмпирический коэффициент детерминации оценивает, насколько вариация результативного признака Y объясняется вариацией фактора Х (остальная часть вариации Y объясняется вариацией прочих факторов).

Для нашей задачи: насколько вариация прибыли (y) объясняется вариацией кредитных вложений (х)

Показатель (этта квадрат) рассчитывается как доля межгрупповой дисперсии в общей дисперсии по формуле

, (5.2.6.)

где – общая дисперсия признака Y,

– межгрупповая (факторная) дисперсия признака Y.

Значения эмпирического коэффициента детерминации изменяются в пределах . При отсутствии корреляционной связи между признаками Х и Y имеет место равенство =0, а при наличии функциональной связи между ними - равенство =1.Чем ближе его значение к 1, тем связь теснее.

Расчет эмпирического коэффициента детерминации по формуле (5.2.6.):

или 81,3%

Вывод. 81,3% вариации суммы прибыли банков обусловлено вариацией объема кредитных вложений, а 18,7% – влиянием прочих, неучтенных в данном исследовании факторов.

Эмпирическое корреляционное отношение оценивает тесноту связи между факторным и результативным признаком

Для нашей задачи: теснота связи между объемом кредитных вложений и суммой прибыли банков

Эмпирическое корреляционное отношение (этта) вычисляется по формуле

(5.2.7.)

Значение показателя изменяются в пределах . Чем ближе значение к 1, тем теснее связь между признаками. Для качественной оценки тесноты связи на основе служит шкала Чеддока (табл. 14):

Таблица 5.2.4.

Шкала Чеддока

h 0,1 – 0,3 0,3 – 0,5 0,5 – 0,7 0,7 – 0,9 0,9 – 0,99
Характеристика силы связи Слабая Умеренная Заметная Тесная Весьма тесная

Расчет эмпирического корреляционного отношения по формуле (5.2.7.):

или 90,2%

Вывод. Согласно шкале Чэддока связь между объемом кредитных вложений и суммой прибыли банков является весьма тесной.

 

 

Правило сложения дисперсий:

Правило сложения дисперсий: общая дисперсия признака (σ2) равна сумме межгрупповой дисперсии (δ2) и средней из внутригрупповых дисперсий ( )

σ2 = δ2 + (5.2.8.)

 

Правило сложения дисперсий имеет практическое значение при определении одной из дисперсий, если известны две другие. Например, зная общую и межгрупповую (факторную) дисперсии, можно определить среднюю дисперсию из внутригрупповых, характеризующую влияние неучтённых факторов.

Рассчитаем внутригрупповую дисперсию и среднюю из внутригрупповых для сквозной задачи:

Внутригрупповые дисперсии ( ) характеризуют вариацию результативного признака под влиянием прочих, неучтенных факторов, рассчитываются для отдельных групп.

Для нашей задачи: средняя из внутригрупповых дисперсий отражает вариацию прибыли под влиянием


Поделиться:

Дата добавления: 2015-08-05; просмотров: 145; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты