КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Логарифмическое дифференцированиеЛогарифмическим дифференцированием называется метод дифференцирования функций, при котором сначала находится логарифм функции, а затем вычисляется производная от него. Такой прием позволяет эффективно вычислять производные степенных и рациональных функций. Рассмотрим этот подход более детально. Пусть дана функция y = f(x). Возьмем натуральные логарифмы от обеих частей: Теперь продифференцируем это выражение как сложную функцию, имея ввиду, что y - это функция от x. Отсюда видно, что искомая производная равна Производные основных элементарных функций ( y=x2; y=x3; y=sinx; y=cosx; y=tgx; y=ctgx; y=ex; y=lnx; y=1/x; y=√x - вывод). Таблица производных Производные простых функций Вывод
Вывод Вывод Таблица производных Дифференциал функции y=f(x). Геометрический смысл. Свойства дифференциала Пусть функция y = f(x) дифференцируема при некотором значении переменной x. Следовательно, в точке x существует конечная производная Тогда по определению предела функции разность (1) является бесконечно малой величиной при . Выразив из равенства (1) приращение функции, получим (2) (величина не зависит от , т. е. остаётся постоянной при ). Если , то в правой части равенства (2) первое слагаемое линейно относительно . Поэтому при оно является бесконечно малой того же порядка малости, что и . Второе слагаемое - бесконечно малая более высокого порядка малости, чем первое, так как их отношение стремится к нулю при Поэтому говорят, что первое слагаемое формулы (2) является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е. (3) Эту главную часть приращения функции называют дифференциалом данной функции в точке xи обозначают или Следовательно, (4) или (5) Итак, дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной. Замечание. Нужно помнить, что если x – исходное значение аргумента, - наращенное значение, то производная в выражении дифференциала берётся в исходной точке x; в формуле (5) это видно из записи, в формуле (4) – нет. Дифференциал функции можно записать в другой форме: (6) Геометрический смысл дифференциала. Дифференциал функции y = f(x) равен приращению ординаты касательной, проведённой к графику этой функции в точке (x; y), при изменении x на величину .
|