КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Дифференцирование функций, заданных неявноПусть значения переменных х и у связаны уравнением F(x, y) = 0. (1) Если функция y = f(x), определенная на некотором интервале (а,в), такая, что уравнение (1) при подстановке в него вместо у выражения f(x) обращается в тождество, то говорят, что уравнение (1) задает функцию y = f(x) неявно или что функция y = f(x) есть неявная функция. Укажем правило нахождения производной неявной функции, не преобразовывая ее в явную, то есть не представляя в виде y = f(x), так как часто это преобразование бывает технически сложным или невозможным. Для нахождения производной у'х неявной функции, нужно продифференцировать по х обе части равенства (1), учитывая, что у есть функция от х. Затем из полученного равенства выразить у'х. Пример 1. Вычислить у'х. У5+ху-х2 = 0 Продифференцируем обе части по х. Получим 5у4у'+у+ху'-2х=0. Выразим у'. y'(5у4+х) = 2х-у, у' =(2х-у)/(5у4+х). Пример 2. tg(x+y) = xy Продифференцируем обе части по х. Получим или . Отсюда или . Окончательно . Заметим, что производная неявной функции выражается через х и у, то есть получается равенство y' = g(x, y) (2) Для вычисления второй производной неявной функции, нужно продифференцировать обе части равенства (2) по х и затем подставить выражение g(x, y) вместо y'. Аналогично можно вычислить производные любого порядка неявной функции.
|