КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Появление и влияние неслучайной составляющей в опытных данных можно показать на следующем примере.Пример 2. В табл. 4 приведена матрица ПФЭ 23, полученная с помощью уже описанного приема (см. табл. 3): два раза повторяется план 22 — один раз на верхнем уровне фактора х3, другой раз — на нижнем. Предположим, что четыре опыта реализуются в первый день, а остальные — во второй день. Предположим также, что условия опытов в эти дни отличались друг от друга на некоторую ошибку (например, сбился нуль измерительного прибора). Тогда при подсчете b3 получается: Таблица 5. Последовательность случайных чисел
где — истинное значение коэффициента при х3. Таким образом, значение b3 искажается. Отметим, что на b1 и b2 не влияет. Рандомизация обычно проводится следующим образом. В таблице случайных чисел из любого столбца выбирают числа в порядке их следования от 1 до N. Если матрица предполагает параллельные опыты, то тогда количество случайных чисел возрастает от 1 до mN, т. е. нумеруются не только строки матрицы, но и параллельные опыты. Каждое число от 1 до N или mN из таблицы случайных чисел берут только один раз. Для рассматриваемого примера в таблице случайных чисел были выбраны числа от 1 до 8 в последовательности, которая приведена в табл. 5. Это значит, что опыт № 1 в матрице планирования («+1, +1,+1, табл. 5) реализуется пятым по порядку, опыт № 6 («—1, +1, —1») реализуется первым и т. д.
|