КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕХНИЧЕСКОЙСтр 1 из 25Следующая ⇒ ПРЕДИСЛОВИЕ Механика, являясь частью физики, изучает общие закономерности, связывающие механические движения и взаимодействия тел, находящихся в трех состояниях: твердом, жидком и газообразном. Различное состояние тел способствовало разделению механики на отдельные области. В механике твердого тела рассматриваются абсолютно твердые и деформируемые тела; последние, в свою очередь, разделяются: на тела упругие и пластические. Изучением законов движения абсолютно твердых тел занимается теоретическая механика, а упругих и пластических — соответственно теория упругости и теория пластичности. Законы движения жидкостей и газов изучает механика жидкостей и газов или гидромеханика. Механика жидкостей и газов, так же как и другие области механики, разделяется на статику, кинематику и динамику. Часть гидромеханики, изучающая условия равновесия жидкостей и газов, называется гидростатикой. Кинематика жидкостей и газов изучает их движение во времени, не интересуясь причинами, вызывающими это движение. Предметом изучения гидродинамики является движения жидкостей и газов в связи с их взаимодействием. Гидромеханика пользуется в качестве основного метода исследований строгим математическим анализом. Вначале независимо, а затем параллельно гидромеханике развивалась гидравлика - прикладная инженерная наука о равновесии и движении жидкостей, основанная преимущественно на экспериментальных данных и разрабатывающая приближенные методы расчета течений жидкости в трубах, каналах и реках, а также в элементах машин с гидравлическим приводом. Происхождение науки гидравлики очень древнее. Явления, относящиеся к области гидравлики, интересовали человека еще в самые отдаленные времена. Многие вопросы, связанные с орошением, водоснабжением и использованием водной энергии для примитивных двигателей, решали в глубокой древности. Основоположником гидравлики считают древнегреческого ученого Архимеда (384-322 до н.э.), который написал трактат “О плавающих телах”. Большой вклад в развитие гидравлики внесли Леонардо да Винчи (1452-1519), Галилей (1564-1642), Паскаль (1623-1662). Итальянский ученый Торричелли - ученик Галилея открыл закон истечения жидкости из сосуда и дал формулу, определяющую скорость истечения жидкости. Французский ученый Паскаль опубликовал в 1650 г. закон о передаче внешнего давления в жидкости, а в 1687 г. английский ученый Ньютон (1642-1727) сформулировал закон внутреннего трения в движущейся жидкости. Гидравлика как самостоятельная наука начала формироваться в XVIII в. после работ, выполненных в Петербургской академии наук М. В. Ломоносовым (1711-1765), Д. Бернулли(1700-1782) и Л. Эйлером (1707-1783), которые разработали основные законы движения жидкости. В 1738 г. Д. Бернулли опубликовал книгу “Гидродинамика”. Даниил Бернулли впервые ввел термин «гидромеханика». Он установил зависимость между удельными энергими при движении жидкости, которая в настоящее время называется уравнением Бернулли. Кроме того, он исследовал задачу о давлении струи жидкости на пластину. В 1748 г. М. В. Ломоносов впервые изложил открытый им закон сохранения энергии. В 1755 г. Л. Эйлер вывел дифференциальные уравнения равновесия и движения жидкостей. Дальнейший этап в истории развития гидромеханики, объединяющий конец XVIII и начало XIX веков, характерен математической разработкой гидродинамики идеальной жидкости. В этот период вышли труды французских математиков Лагранжа (1736 - 1813) и Коши (1789 - 1857), посвященные потенциальным плоским потокам, теории волн малой амплитуды и др. Основы теории движения вязкой жидкости были заложены французским ученым Навье (1785—1836) и английским физиком и математиком Стоксом (1819—1903). Поэтому уравнения движения вязкой жидкости называются уравнениями Навье— Стокса. В 1881 г. профессор Казанского университета И. С. Громеко (1851—1889) опубликовал работу «Некоторые случаи движения несжимаемой жидкости», в которой дал новую форму уравнений движения жидкости, удобную для получения энергетических зависимостей. Им же впервые было проведено теоретическое исследование нестационарного движения жидкости в капиллярах. Большую роль в развитии гидравлики сыграли русские ученые: Н. П. Петров, Н. Е. Жуковский (1847-1921), В. Г. Шухов исследования которых в области механики жидкости стали классическими. В 1883 г. Н. П. Петров разработал гидродинамическую теорию смазки. Опубликованная в 1889 г. работа русского ученого Н. Е. Жуковского “О гидравлическом ударе в водопроводных трубах” получила мировую известность. Из многочисленных экспериментальных исследований движения жидкости в трубах укажем на опыты с трубками малого диаметра французского врача и испытателя Пуазёйля (1799—1869), изучавшего движение крови в сосудах, и опыты английского физика Рейнольдса (1842—1912), установившего в 1883 г. закон подобия течений в трубах. Целую эпоху в истории развития гидромеханики составляют исследования по воздухоплаванию, включающие разработку теории полета самолетов и ракет. Результаты этих исследований были изложены в трудах выдающихся русских ученых Д. И.Менделеева (1834—1907),Н. Е. Жуковского и С. Д. Чаплыгина (1869—1942). В 1880 г, Д. И. Менделеев опубликовал работу «О сопротивлении жидкостей и воздухоплавании», в которой были высказаны важные положения о механизме сопротивления движению тел в жидкости и даны основные представления о пограничном слое. Созданию теории крыла и воздушного винта были посвящены исследования Н. Е. Жуковского. В 1906 г. он разработал теорию подъемной силы крыла, имеющую большое значение. Дальнейшее развитие гидромеханики широко используется при создании современных машин различного назначения с гидроприводом, в том числе технологических Повышение технического уровня гидрофицированных технологических: кузнечно-прессовых, металлургических и подъёмно-транспортных машин основано прежде всего на применении современного гидрооборудования и средств гидроавтоматики, обладающих высокими основными параметрами и показателями надежности. К важнейшим показателям, характеризующим эксплуатационные свойства гидрооборудования данных машин, относятся диапазон регулирования и работоспособность в широком интервале изменения температур воздуха и рабочей жидкости, а также возможность дистанционного и автоматического управления исполнительными механизмами машин. При разработке данного пособия были приняты во внимание работы по разработке, созданию и применению гидроприводов на промышленных предприятиях города Магнитогорска. В частности, учтен опыт использования элементов и систем гидроприводов технологических машин таких широко известных фирм, как “MANNESMAN REXROTH”, “BOSH”, “HITACHI”, “MOOG” на Магнитогорском металлургическом комбинате, а также в подъемно-транспортных, строительных, дорожных машинах различных фирм, используемых в тресте “Магнитострой“.
ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕХНИЧЕСКОЙ
|