Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Понятие об установившемся и неустановившемся, равномерном и неравномерном движении. Уравнение неразрывности.




Все случаи течения жидкости можно разделить на виды, представленные на рисунке 2.36.

Рис. 2.36. Виды движения жидкости

Установившееся движение жидкостидвижение жидкости, при котором все параметры жидкости (давление, температура, скорость и др.) не изменяются по времени.

  . (2.37)

Для неустановившегося движения:

  . (2.38)

Равномерное движение – установившееся движение, при котором скорость по всей длине потока не изменяется:

  . (2.39)

Напорное движение устанавливается в закрытых гидравлических системах, в которых жидкость течет в, основном, под действием силы давления, безнапорное движение наблюдается в открытых системах, в которых движение жидкости происходит под действием силы тяжести.

Основным условием, которое должно соблюдаться при течении жидкости, является непрерывность изменения параметров потока в зависимости от координат и времени, т.е. при течении жидкости должны быть соблюдены условия при, которых жидкость должна двигаться в канале как сплошная среда, без разрывов.

Выделим внутри пространства с движущейся капельной жидкостью неподвижный контур в форме элементарного параллелепипеда с ребрами dx, dy, dz (см. рис. 2.35). Обозначим скорость жидкости, которая втекает в левую грань параллелепипеда, через . Скорость жидкости, вытекающей из правой грани, вследствие неразрывности поля скоростей равна

Рис. 2.35. Движение жидкости через контур

 

.

Поскольку рассматриваемый элементарный объем неподвижен, изменение скорости не зависит от времени. В направлении оси х через левую грань втечет за 1 с жидкость массой , а вытекает через правую грань

.

Значит, за 1 с из параллелепипеда вытекает в направление оси х жидкости больше, чем втекает, на

Аналогичные выражения получаются и для направлений x, y, z. Закон сохранения массы требует, чтобы сумма трех полученных приращений была равна нулю:

  . (2.33)

Это уравнение называют уравнением неразрывности, т.к. оно предполагает, что жидкость является сплошной средой.

Рассмотрим уравнение неразрывности для случая течения струйки при установившемся движении. Масса жидкости течет в трубке тока (см. рис. 2.34). Пусть левое входное сечение трубки тока имеет площадь и в этом сечении скорость жидкости , а ее плотность . Площадь сечения на выходе из трубки тока , скорость течения жидкости , и ее плотность . Скорости струйки направлены по касательной к стенкам трубки тока, поэтому через стенки обмен массой с окружающей жидкостью отсутствует. Через левое сечение втекает в единицу времени масса жидкости . Через правое сечение вытекает в единицу времени масса жидкости . В трубке тока масса жидкости, находящаяся между левым и правым сечениями, остается постоянной, следовательно, условие сплошности потока в трубке тока будет:

  const. (2.34)

Если плотность жидкости по длине трубки тока не изменяется, т.е. = , то можно записать для левого и правого сечений:

  = const или const. (2.35)

Полученное уравнение является уравнением неразрывности для трубки тока.

Для потока реальной жидкости уравнение неразрывности записывается в следующем виде:

  , (2.36)

где и – площади сечения потока в сечениях на входе и на выходе; и – средние скорости потока в этих сечениях.

Можно сделать два важных вывода:

  1. При установившемся движении жидкости объемный расход не меняется;
  2. При увеличении площади сечения потока жидкости средняя скорость уменьшается, и, наоборот, при уменьшении сечения - скорость увеличивается.

Поделиться:

Дата добавления: 2015-04-21; просмотров: 672; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты