КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Понятие об установившемся и неустановившемся, равномерном и неравномерном движении. Уравнение неразрывности.Все случаи течения жидкости можно разделить на виды, представленные на рисунке 2.36. Рис. 2.36. Виды движения жидкости Установившееся движение жидкости – движение жидкости, при котором все параметры жидкости (давление, температура, скорость и др.) не изменяются по времени.
Для неустановившегося движения:
Равномерное движение – установившееся движение, при котором скорость по всей длине потока не изменяется:
Напорное движение устанавливается в закрытых гидравлических системах, в которых жидкость течет в, основном, под действием силы давления, безнапорное движение наблюдается в открытых системах, в которых движение жидкости происходит под действием силы тяжести. Основным условием, которое должно соблюдаться при течении жидкости, является непрерывность изменения параметров потока в зависимости от координат и времени, т.е. при течении жидкости должны быть соблюдены условия при, которых жидкость должна двигаться в канале как сплошная среда, без разрывов. Выделим внутри пространства с движущейся капельной жидкостью неподвижный контур в форме элементарного параллелепипеда с ребрами dx, dy, dz (см. рис. 2.35). Обозначим скорость жидкости, которая втекает в левую грань параллелепипеда, через . Скорость жидкости, вытекающей из правой грани, вследствие неразрывности поля скоростей равна Рис. 2.35. Движение жидкости через контур
. Поскольку рассматриваемый элементарный объем неподвижен, изменение скорости не зависит от времени. В направлении оси х через левую грань втечет за 1 с жидкость массой , а вытекает через правую грань . Значит, за 1 с из параллелепипеда вытекает в направление оси х жидкости больше, чем втекает, на Аналогичные выражения получаются и для направлений x, y, z. Закон сохранения массы требует, чтобы сумма трех полученных приращений была равна нулю:
Это уравнение называют уравнением неразрывности, т.к. оно предполагает, что жидкость является сплошной средой. Рассмотрим уравнение неразрывности для случая течения струйки при установившемся движении. Масса жидкости течет в трубке тока (см. рис. 2.34). Пусть левое входное сечение трубки тока имеет площадь и в этом сечении скорость жидкости , а ее плотность . Площадь сечения на выходе из трубки тока , скорость течения жидкости , и ее плотность . Скорости струйки направлены по касательной к стенкам трубки тока, поэтому через стенки обмен массой с окружающей жидкостью отсутствует. Через левое сечение втекает в единицу времени масса жидкости . Через правое сечение вытекает в единицу времени масса жидкости . В трубке тока масса жидкости, находящаяся между левым и правым сечениями, остается постоянной, следовательно, условие сплошности потока в трубке тока будет:
Если плотность жидкости по длине трубки тока не изменяется, т.е. = , то можно записать для левого и правого сечений:
Полученное уравнение является уравнением неразрывности для трубки тока. Для потока реальной жидкости уравнение неразрывности записывается в следующем виде:
где и – площади сечения потока в сечениях на входе и на выходе; и – средние скорости потока в этих сечениях. Можно сделать два важных вывода:
|