Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Функции многих переменных. Частные производные и полный дифференциал ф.м.п.

Читайте также:
  1. Gt; 89. Предмет и функции СО как научной дисциплины и практической области деятельности. (не до
  2. II СЕНСОРНЫЕ ФУНКЦИИ
  3. II. Структура Системы сертификации ГОСТ Р и функции ее участников
  4. III. Функции Фондово-закупочной комиссии
  5. А) длительные нарушения овариально-менструальной функции 1 страница
  6. А) длительные нарушения овариально-менструальной функции 2 страница
  7. А) длительные нарушения овариально-менструальной функции 3 страница
  8. А) длительные нарушения овариально-менструальной функции 4 страница
  9. Администрирование как вид управления. Функции и ответственность администратора.
  10. Анатомия, гистология, функции наружной оболочки глаза.

При рассмотрении функций нескольких переменных ограничимся подробным описанием функций двух переменных, т.к. все полученные результаты будут справедливы для функций произвольного числа переменных.

Определение: Если каждой паре независимых друг от друга чисел (х, у) из некоторого множества по какому - либо правилу ставится в соответствие одно или несколько значений переменной z, то переменная z называется функцией двух переменных.

z = f(x, y)

Определение: Если паре чисел (х, у) соответствует одно значение z, то функция называется однозначной, а если более одного, то – многозначной.

Определение: Областью определения функции z называется совокупность пар (х, у), при которых функция z существует.

Определение: Окрестностью точкиМ00, у0) радиуса r называется совокупность всех точек (х, у), которые удовлетворяют условию .

Определение: Число А называется пределом функции f(x, y) при стремлении точки М(х, у) к точке М00, у0), если для каждого числа e > 0 найдется такое число r >0, что для любой точки М(х, у), для которых верно условие

также верно и условие .

Записывают:

Определение: Пусть точка М00, у0) принадлежит области определения функции f(x, y). Тогда функция z = f(x, y) называется непрерывной в точке М00, у0), если

(1)

причем точка М(х, у) стремится к точке М00, у0) произвольным образом.

Если в какой – либо точке условие (1) не выполняется, то эта точка называется точкой разрывафункции f(x, y). Это может быть в следующих случаях:

1) Функция z = f(x, y) не определена в точке М00, у0).

2) Не существует предел .

3) Этот предел существует, но он не равен f( x0, y0).

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой и

ограниченной области D, то в этой области найдется по крайней мере одна точка

N(x0, y0, …), такая, что для остальных точек верно неравенство

f(x0, y0, …) ³ f(x, y, …)

а также точка N1(x01, y01, …), такая, что для всех остальных точек верно неравенство

f(x01, y01, …) £ f(x, y, …)

тогда f(x0, y0, …) = M – наибольшее значение функции, а f(x01, y01, …) = m – наименьшее значениефункции f(x, y, …) в области D.

Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.



Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m – соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки m Î [m, M] существует точка

N0(x0, y0, …) такая, что f(x0, y0, …) = m.

Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.

Свойство. Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число К, что для всех точек области верно неравенство .

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа e существует такое число D > 0, что для любых двух точек (х1, y1) и (х2, у2) области, находящихся на расстоянии, меньшем D, выполнено неравенство

Определение. Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина Dxz = f( x + Dx, y) – f(x, y) называется частным приращением функции по х.



 

Можно записать

.

Тогда называется частной производнойфункции z = f(x, y) по х.

Обозначение:

Аналогично определяется частная производная функции по у.

Геометрическим смысломчастной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N0(x0, y0, z0) к сечению поверхности плоскостью у = у0.

Полное приращение и полный дифференциал.

Определение. Для функции f(x, y) выражение Dz = f( x + Dx, y + Dy) – f(x, y) называется полным приращением.

Если функция f(x, y) имеет непрерывные частные производные, то

Применим теорему Лагранжа (см. Теорема Лагранжа.) к выражениям, стоящим в квадратных скобках.

здесь

Тогда получаем

Т.к. частные производные непрерывны, то можно записать равенства:

 

Определение. Выражение называется полным приращениемфункции f(x, y) в некоторой точке (х, у), где a1 и a2 – бесконечно малые функции при Dх ® 0 и Dу ® 0 соответственно.

Определение: Полным дифференциаломфункции z = f(x, y) называется главная линейная относительно Dх и Dу приращения функции Dz в точке (х, у).

Для функции произвольного числа переменных:

Пример. Найти полный дифференциал функции .

Пример. Найти полный дифференциал функции


Дата добавления: 2015-04-21; просмотров: 12; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Понятие метрического пространства. Открытые и замкнутые множества. | Дифференцирование сложных ф.м.п. Производная по направлению.
lektsii.com - Лекции.Ком - 2014-2019 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты