КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Касательная плоскость и нормаль к поверхности. Частные производные высших порядков.
нормаль
N j N0
касательная плоскость Пусть N и N0 – точки данной поверхности. Проведем прямую NN0. Плоскость, которая проходит через точку N0, называется касательной плоскостью к поверхности, если угол между секущей NN0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN0. Определение. Нормальюк поверхности в точке N0 называется прямая, проходящая через точку N0 перпендикулярно касательной плоскости к этой поверхности. В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе. Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М0(х0, у0), касательная плоскость в точке N0(x0,y0,(x0,y0)) существует и имеет уравнение: . Уравнение нормали к поверхности в этой точке: Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х0, у0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х0, у0) к точке (х0+Dх, у0+Dу). Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной. Пример. Найти уравнения касательной плоскости и нормали к поверхности в точке М(1, 1, 1). Уравнение касательной плоскости: Уравнение нормали: Частные производные высших порядков. Если функция f(x, y) определена в некоторой области D, то ее частные производные и тоже будут определены в той же области или ее части. Будем называть эти производные частными производными первого порядка. Производные этих функций будут частными производными второго порядка. Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков. Определение. Частные производные вида и т.д. называются смешанными производными. Теорема. Если функция f(x, y) и ее частные производные определены и непрерывны в точке М(х, у) и ее окрестности, то верно соотношение: . Т.е. частные производные высших порядков не зависят от порядка дифференцирования. Аналогично определяются дифференциалы высших порядков. ………………… Здесь n – символическая степень производной, на которую заменяется реальная степень после возведения в нее стоящего с скобках выражения.
|