КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Условие возрастания и убывания функций. Точки экстремума. Отыскание наибольших и наименьших значений непрерывной на отрезке функции.Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0. 2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b]. Доказательство. 1) Если функция f(x) возрастает, то f(x + Dx) > f(x) при Dx>0 и f(x + Dx) < f(x) при Dх<0, тогда: 2) Пусть f¢(x)>0 для любых точек х1 и х2, принадлежащих отрезку [a, b], причем x1<x2. Тогда по теореме Лагранжа: f(x2) – f(x1) = f¢(e)(x2 – x1), x1 < e < x2 По условию f¢(e)>0, следовательно, f(x2) – f(x1) >0, т.е. функция f(x) возрастает. Теорема доказана. Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f¢(x)£0 на этом отрезке. Если f¢(x)<0 в промежутке (a, b), то f(x) убывает на отрезке [a, b]. Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b). Доказанную выше теорему можно проиллюстрировать геометрически:
y y
j j j j x x
|