Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Вычитание множеств




Если заданы два множества, то можно не только найти их пересечение и объединение, но и вычесть из одного множества другое. Результат вычитания называют разностью и определяют следующим образом.

Разностью множеств А и В называется множество, содержащее все элементы, которые принадлежат множеству А и не принадлежат множеству В, обозначается А \ В. А \ В = {х А и х В}.

Х \ Y = {0, 1, 3, 5} \ {1, 2, 3, 4} = {0, 5}. Если мы найдем разность множеств Y и Х, то результат будет выглядеть так: Y \ X = {2; 4}. Таким образом, разность множеств не обладает переместительным (коммутативным) свойством.

Если изобразить множества А и В при помощи кругов Эйлера, то разность данных множеств изобразится заштрихованной областью.

 

А \ В

Если множества не имеют общих элементов, то их разность будет изображаться так:

 

 

 
 

 
 

 

 


А \ В

Если одно из множеств является подмножеством другого, то их разность будет изображаться так:


А \ В

 

 

Пересечение – более «сильная» операция, чем вычитание. Поэтому порядок выполнения действий в выражении А \ В С такой: сначала находят пересечение множеств В и С, а затем полученное множество вычитают из множества А. Что касается объединения и вычитания множеств, то их считают равноправными. Например, в выражении А \ В U С надо сначала выполнить вычитание (из А вычесть В), а затем полученное множество объединить с множеством С.

Вычитание множеств обладает рядом свойств:

1. (А \ В) \ С = (А \ С) \ В.

2. (А U В) \ С = (А \ С) U (В \ С).

3. (А \ В) ∩ С = (А ∩ С) \ (В ∩С).

4. А \ (В U С) = (А \ В) ∩ (А \ С).

5. А \ (В ∩ С) = (А \ В) U (А \ С).


Поделиться:

Дата добавления: 2015-07-26; просмотров: 137; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты