![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Загальні властивості функційОзначення: Множина всіх значень аргумента, для яких можна обчислити значення функції, називається природною областю визначення функції. Область визначення може бути заданою; у цьому випадку вона залежить також від умови задачі. Приклад: Знайти область визначення функції D(y)=(-1; 0) Означення: Функція у = f(x) називається парною (непарною), якщо для будь-якого х Функція буде ні парною, ні непарною, якщо для х Приклад: у = cos х — парна функція (графік функції симетричний відносно осі ординат (рис. 3.2)), бо у(х)=cos(- х)=cosx=у(х);у=arctgx — непарна функція (графік функції симетричний відносно початку координат (рис. 3.3)), бо у(- х)= =arctg(- х)= - arctgx = - у(х); у = arccosx — ні парна, ні непарна (рис. 3.4), бо у(-x)=arccos(-х)=
Означення: Функція у = f(x) називається періодичною, якщо для х Приклад: у = tgx — періодична функція з мінімальним періодом Т = (див. рис. 3.5), бо tg(x +
Означення: Функція у - f(x) називається обмеженою на множині D, якщо для всіх х Приклад: y = arcsinx — обмежена функція для всіх х Означення: Функція у - f(x) називається монотонно зростаючою (спадною) на множині D, якщо для всіх х Приклад: у = loga х — монотонно спадна функція при 0 < а <1, а при а > 1 — монотонно зростаюча (рис. 3.7).
3.1.3. Елементарні функції Основні з них: 1) степенева у = ха; 1) степенева у = ха; 2) показникова у = ах, а > 0, а 3) логарифмічна у = logа х, а > 0, а 4) тригонометричні: у = cosx (рис. 3.2); у = sinx (рис. 3.9); у = tgx (рис. 3.5); у = ctgx (рис. 3.10); 5) обернені тригонометричні: y = arcsinx (рис. 3.6); y = arccosx (рис. 3.4); у = arctgx (рис. 3.5); у = arcctgx (рис. 3.11).
Рис. 3.10 Рис. 3.11
Функція вважається елементарною, якщо вона може бути побудована з основних елементарних функцій за допомогою скінченного числа алгебраїчних дій та суперпозицій, наприклад
Означення: Функція у=у(х) називається алгебраїчною, якщо у(х) — розв'язок рівняння де Рі(х), i = (О,n) — многочлени.
Приклад: Функція Усі неалгебраїчні функції називаються трансцендентними. Алгебраїчні функції поділяються на раціональні (цілі й дробові) та ірраціональні. Цілою раціональною функцією буде упорядкований многочлен Дробово-раціональною функцією буде відношення многочленів
Термінологічний словник ключових понять: Функція — це така відповідність між множинами D та Е, при якій кожному значенню змінної x Область визначення функції — це множина всіх значень аргумента, для яких можна обчислити значення функції.
|