Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Свойства средней арифметической

Читайте также:
  1. Bonpoс 19 Сплавы на основе алюминия и магния. Свойства и области применения.
  2. G) средневзвешенной стоимости (средней оценки).
  3. I. Целительные свойства цвета 1 страница
  4. I. Целительные свойства цвета 2 страница
  5. I. Целительные свойства цвета 3 страница
  6. I. Целительные свойства цвета 4 страница
  7. I. Целительные свойства цвета 5 страница
  8. I. Целительные свойства цвета 6 страница
  9. А10. Характерные химические свойства неорганических веществ различных классов: оксидов (основных, амфотерных, кислотных).
  10. Абсолютное ггидростатическоеидростатическое давление и его свойства

1.Средняя арифметическая постоянной величины равна самой величине.

2.Если все варианты xi увеличить (уменьшить) на одно и тоже число c, увеличится (уменьшится) на то же число.

. (3.19)

3.Если все варианты xi увеличить (уменьшить) в одно и то же число раз k, увеличится (уменьшится) в то же число раз.

. (3.20)

4.Средняя арифметическая отклонений вариантов от средней арифметической равна 0.

. (3.21)

Докажем по свойству 2 при : .

5.Средняя арифметическая алгебраической суммы признаков равна такой же сумме средней арифметической этих признаков.

. (3.22)

6.Если ряд состоит из нескольких групп, общая средняя равна средней арифметической групповых средних, причем весами являются объемы группы.

, (3.23)

где – средняя арифметическая группы i;

N – общий объем ряда ( );

ni – объем группы i ( ).

. (3.24)

Средняя арифметическая группировочных средних применяется, когда проводится вторичная группировка или когда сопоставляются ряды.

 


Дата добавления: 2015-07-26; просмотров: 4; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Средние степенные величины | Средняя арифметическая
lektsii.com - Лекции.Ком - 2014-2018 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты