![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Свойства операции объединения.Стр 1 из 9Следующая ⇒ Теор. 1.2.1. Справедливы следующие равенства: 1. 2. (А 3. Если 4. А Док-во. Формулы, подобные формулам 1-2, обычно доказываются так. Берётся элемент, принадлежащий правой части равенства, и доказывается, что он принадлежит левой части. В результате для формулы 1, например, будет доказано, что
Другой способ доказательства - изобразить левую и правую часть равенства для одних и тех же множеств на диаграммах Эйлера-Венна и убедиться, что они изображают одно и тоже множество. Так, для формулы 1 диаграммы приведены слева. Задание. Самостоятельно доказать включения соответствующих множеств и изобразить диаграммы для формул 2-4. Опр.1.2.3. Пересечением множеств А и В называется множество С, состоящее из элементов, принадлежащих одновременно и множеству А, и множеству В. Если множества А и В не имеют общих элементов, их пересечение равно пустому множеству; в этом случае множества А и В называются непересекающимися. Пересечение множеств обозначается символами "
Теор. 1.2.2. Справедливы следующие равенства: 5. 6. (А 7. Если 8. А Задание. Самостоятельно доказать включения соответствующих множеств и изобразить диаграммы для формул 5-8. Опр. 1.2.4 пересечения множеств для большего числа множеств: Пересечением множеств А1, А2, А3, …, Аn (обозначение Теор. 1.2.3. Для операций объединения и пересечения множеств справедливы законы дистрибутивности: 9. 10. Док-во: Докажем формулу 9. Пусть Пусть Задание. Самостоятельно доказать формулу 10. Опр. 1.2.5. Разностью множеств А и В называется множество А\В, содержащее те элементы множества А, которые не принадлежат множеству В.
В опр. 1.2.5 не предполагается, что ![]() ![]() ![]() Теор. 1.2.4. Операции разности и дополнения антидистрибутивны относительно операций объединения и пересечения: 11. 12. (Дополнение к объединению некоторых множеств равно пересечению их дополнений; дополнение к пересечению множеств равно объединению их дополнений. Другими словами, символ дополнения \ можно менять местами со знаками Док-во. Докажем формулу 11. Пусть Пусть Задание. Самостоятельно доказать формулу 12 и обобщение формул 11, 12 на большее число множеств: 13. 1.3. Мощность множества. Количество элементов в конечном множестве естественно характеризовать их числом. В этом смысле множество чисел {-2, 0, 3,8} и множество букв {с, х, ф, а} эквивалентны, так как они содержат одинаковое число элементов. Для бесконечных множеств такого простого правила сравнения количеств элементов в них нет; чтобы получить возможность описывать количество элементов в бесконечных множествах, введём следующие определения. Опр. 1.3.1. Между множествами А и В установлено взаимно-однозначное соответствие, если каждому элементу множества А каким-либо образом сопоставлен единственный элемент множества В, при этом каждому элементу множества В сопоставляется единственный элемент множества А. Опр. 1.3.2. Множества, между которыми можно установить взаимно-однозначное соответствие, называются равномощными (имеющими одинаковую мощность, эквивалентными). Равномощность множеств обозначается символом "~": А~В. Так, для приведённых выше множеств взаимно-однозначное соответствие устанавливается соотношениями -2«с, 0«ф, 3«а, 8«х. Однако ценность опр. 1.8 эквивалентности множеств заключается в том, что оно применимо к любым, в том числе бесконечным, множествам. Так, рассмотрим множество N натуральных чисел и множество N2={ 2, 4, 6, …} четных чисел. Взаимно-однозначное соответствие между этими множествами устанавливается соотношениями n«2n, следовательно, эти множества равномощны: N~N2. Этот пример показывает, что собственное подмножество может быть равномощным всему множеству; естественно, это может быть только для бесконечных множеств. Соотношение ~ эквивалентности множеств транзитивно: если А~В, В~С, то А~С. Взаимно-однозначное соответствие между элементами а множества А и с множества С устанавливается по цепочке а «в«с. Опр. 1.3.4. Множество, эквивалентное множеству натуральных чисел N называется счётным множеством.
Равномощны множества точек любых двух отрезков [a,b] и [c,d] (соответствие можно установить, например, с помощью центрального проектирования; рис. 7). Так же можно доказать равномощность множеств точек любых двух интервалов. Множество точек интервала равномощно множеству точек всей прямой (рис. 8). Сложнее ответить на вопрос, равномощны ли множества точек отрезка и интервала. Положительный ответ на этот вопрос даёт следующая теорема:
Опр. 1.3.5. Множество, эквивалентное множеству точек любого отрезка, называется множеством мощности континуум. Рассмотрим более подробно свойства счётных множеств и множеств мощности континуум.
|