Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Понятие числовой функции




Пусть задано числовое множество Х. Правило, сопоставляющее каждому числу х из множества Х единственное действительное число у, называют

числовой функцией, заданной на множестве Х.

х - независимая переменная (аргумент);

у - зависимая переменная (функция).

Символическая запись функции имеет вид у = f(х)

Множество Х называется областью определения функции у и обозначается D(у). Е(у) - область (множество) значений функции у – множество всех значений переменной у, которые она принимает при всех допустимых значениях х.

1.2.Четность функции

Функция у = f(х) называется четной, если для любого значения х, взятого из области определения функ­ции, значение также принадлежит области определения и вы­полняется равенство f(х) = f(-х).

Согласно определению, четная функция определена на мно­жестве, симметричном относительно начала координат. График четной функции симметричен относительно оси ординат (рис. 1).

Рис. 1. График четной функции

Примеры четных функций:

Функция у = f(х) называется нечетной, ес­ли для любого значения х, взятого из области определения функции, значение также принадлежит области опреде­ления и выполняется равенство f(x)= -f(x).

График нечетной функции симметричен относительно начала координат (рис. 2).

Примеры нечетных функций:

 

Рис. 2. График нечетной функции

 

При построении графиков четных и нечетных функций доста­точно построить только правую ветвь графика — для положи­тельных значений аргумента. Левая ветвь достраивается симметрично относительно оси оy для четной функции и кососимметрично (т. е. симметрично относительно начала координат) для нечетной.

Конечно, большинство функций не являются ни четными, ни нечетными. Таковы, например, функции:


Поделиться:

Дата добавления: 2015-07-26; просмотров: 96; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты