Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


СЕМАНТИКА ЛОГИЧЕСКАЯ




— раздел логики (металогики),ис­следующий отношение языковых выражений к обозначаемым объектам и выражаемому содержанию. В С. л. традиционно выделяют две области — теорию референции (обозначения) и теорию смысла.Теория референции исследует от­ношение языковых выражений к обозначаемым объектам, ее ос­новными категориями являются: «имя», «обозначение», «выполни­мость», «истинность», «интерпретация», «модель» и т. п. Теория ре­ференции служит основой теории доказательств в логике. Теория смысла пытается ответить на вопрос о том, что такое смысл языко­вых выражений, когда выражения являются тождественными по смыслу, как соотносятся смысл и денотат и т. п. Значительную роль в С.л. играет обсуждение семантических парадоксов,решение кото­рых является важным критерием приемлемости любой семантичес­кой теории.

СЕМАНТИЧЕСКАЯ КАТЕГОРИЯ -класс языковых выражений, взаимная замена которых в предложении сохраняет его граммати­ческий статус, т. е. предложение остается предложением. Если, напр., в предложении «Волга впадает в Каспийское море» слово «Волга» мы заменим словом «Нева», то получим хотя и ложное, но все-таки предложение. Это означает, что слова «Волга» и «Нева» принадлежат одной С.к. Но если вместо слова «Волга» мы поставим слово «мень­ше», то у нас окажется бессмысленный набор слов, следовательно, слова «Волга» и «меньше» принадлежат разным С. к.

Наиболее известную систему С. к. разработал польский логик К. Айдукевич (1890—1963). Исходными категориями его системы яв­ляются категории собственных имен (n) и высказыва­ний (s).Предполагается, что каждое правильно построенное выра­жение языка может быть расчленено на функтор и его аргументы. Категория функтора определяется как дробь, в знаменателе которой стоят категории аргументов, а в числителе - категория выражения, образующегося в результате сочленения функтора с аргументами

 

Напр., к какой С. к. принадлежит одноместный предикат «...бел»? Его единственным аргументом является некоторое имя, категория которого помещается в знаменателе дроби; в результате соединения предиката с именем получается предложение, категория которого

 

 

помещается в числителе дроби, получается . С. к. двухместного пре­диката, скажем, «больше», будет выглядеть

 

так: . Логические связ­ки можно рассматривать как функторы, применяемые к предложе­ниям, причем в результате опять получается предложение. Т. о., кате­гория бинарной связки, скажем, «или», «если, то» и т. п., будет

выглядеть так: . Теория С. к. служит основой для классификации

формализованных языков и определения важных семантичес­ких понятий, например понятия истины.


 

Билет № 5


Поделиться:

Дата добавления: 2015-08-05; просмотров: 144; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты